咨询与建议

限定检索结果

文献类型

  • 226 篇 会议
  • 125 篇 期刊文献

馆藏范围

  • 351 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 192 篇 工学
    • 103 篇 计算机科学与技术...
    • 88 篇 软件工程
    • 54 篇 控制科学与工程
    • 48 篇 信息与通信工程
    • 29 篇 生物医学工程(可授...
    • 29 篇 生物工程
    • 28 篇 电气工程
    • 27 篇 机械工程
    • 27 篇 电子科学与技术(可...
    • 18 篇 光学工程
    • 14 篇 仪器科学与技术
    • 14 篇 动力工程及工程热...
    • 11 篇 交通运输工程
    • 10 篇 化学工程与技术
    • 7 篇 材料科学与工程(可...
    • 6 篇 航空宇航科学与技...
  • 101 篇 理学
    • 40 篇 数学
    • 34 篇 物理学
    • 32 篇 生物学
    • 14 篇 系统科学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
  • 40 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 30 篇 医学
    • 28 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 8 篇 法学
    • 7 篇 社会学
  • 7 篇 农学
  • 5 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 14 篇 cameras
  • 13 篇 robots
  • 11 篇 robot vision sys...
  • 10 篇 deep learning
  • 10 篇 robotics and aut...
  • 9 篇 mobile robots
  • 9 篇 accuracy
  • 8 篇 robot sensing sy...
  • 8 篇 real-time system...
  • 8 篇 navigation
  • 8 篇 control systems
  • 7 篇 intelligent robo...
  • 7 篇 laboratories
  • 7 篇 trajectory
  • 7 篇 robustness
  • 6 篇 costs
  • 6 篇 service robots
  • 6 篇 energy efficienc...
  • 5 篇 force
  • 5 篇 optimization

机构

  • 8 篇 shenzhen institu...
  • 7 篇 laboratory of ro...
  • 7 篇 laboratory of el...
  • 6 篇 college of elect...
  • 5 篇 department of in...
  • 4 篇 department of el...
  • 4 篇 school of comput...
  • 4 篇 school of roboti...
  • 4 篇 department of au...
  • 4 篇 school of electr...
  • 4 篇 department of ro...
  • 3 篇 department of el...
  • 3 篇 school of comput...
  • 3 篇 guolu gaoke engi...
  • 3 篇 department of el...
  • 3 篇 department of th...
  • 3 篇 department of co...
  • 3 篇 guangdong key la...
  • 3 篇 computer science...
  • 3 篇 institute of ind...

作者

  • 7 篇 qiu guoping
  • 5 篇 a. amanatiadis
  • 5 篇 jayakody dushant...
  • 5 篇 el-shafai walid
  • 5 篇 muthuchidambaran...
  • 5 篇 a. gasteratos
  • 5 篇 gao lin
  • 4 篇 e. rogers
  • 4 篇 al-turjman fadi
  • 4 篇 ghosh joydev
  • 4 篇 joshuva arockia ...
  • 4 篇 fathi e.abd el-s...
  • 4 篇 k. galkowski
  • 4 篇 john a. rogers
  • 4 篇 akif durdu
  • 4 篇 ahmed sedik
  • 3 篇 huang jianwei
  • 3 篇 bing chu
  • 3 篇 gasteratos anton...
  • 3 篇 wang hwang-cheng

语言

  • 338 篇 英文
  • 11 篇 其他
  • 2 篇 中文
检索条件"机构=Electronics and Computer Engineering & Robotics Engineering"
351 条 记 录,以下是271-280 订阅
排序:
Automatic Interaction and Activity Recognition from Videos of Human Manual Demonstrations with Application to Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: Merlo, Elena Lagomarsino, Marta Lamon, Edoardo Ajoudani, Arash Human-Robot Interfaces and Interaction Laboratory Istituto Italiano di Tecnologia Genoa Italy Dept. of Informatics Bioengineering Robotics and Systems Engineering University of Genoa Genoa Italy Dept. of Electronics Information and Bioengineering Politecnico di Milano Milan Italy Dept. of Information Engineering and Computer Science University of Trento Trento Italy
This paper presents a new method to describe spatio-temporal relations between objects and hands, to recognize both interactions and activities within video demonstrations of manual tasks. The approach exploits Scene ... 详细信息
来源: 评论
Automatic Interaction and Activity Recognition from Videos of Human Manual Demonstrations with Application to Anomaly Detection
Automatic Interaction and Activity Recognition from Videos o...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Elena Merlo Marta Lagomarsino Edoardo Lamon Arash Ajoudani Human-Robot Interfaces and Interaction Laboratory Istituto Italiano di Tecnologia Genoa Italy Dept. of Informatics Bioengineering Robotics and Systems Engineering University of Genoa Genoa Italy Dept. of Electronics Information and Bioengineering Politecnico di Milano Milan Italy Dept. of Information Engineering and Computer Science University of Trento Trento Italy
This paper presents a new method to describe spatio-temporal relations between objects and hands, to recognize both interactions and activities within video demonstrations of manual tasks. The approach exploits Scene ...
来源: 评论
MiniNet: An extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jun Li, Qing Cao, Rui Tang, Wenming Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham United Kingdom
Predicting depth from a single image is an attractive research topic since it provides one more dimension of information to enable machines to better perceive the world. Recently, deep learning has emerged as an effec... 详细信息
来源: 评论
Integration of Convolutional Neural Networks for Real-Time Monitoring of Soil Health in Precision Agriculture
Integration of Convolutional Neural Networks for Real-Time M...
收藏 引用
International conference of electronics, Communication and Aerospace Technology (ICECA)
作者: Tummapudi Sunil Krishnagandhi Pachiappan S. Senthilrajan Y. Nagendar Renato R. Maaliw C. Pavin Department of CSE Malla Reddy Engineering College Malkajgiri Hyderabad India Electrical and Electronics Engineering Nandha Engineering College Erode Tamil Nadu India Department of Robotics& Automation Rajalakshmi Engineering College Chennai Tamil Nadu India Department of School of Computer Science and Artificial Intelligence SR University Warangal Telangana India Department of CSE Southern Luzon State University Lucban Quezon Philippines Biomedical Engineer YAR Tech Services Hyderabad India
Convolutional Neural Networks (CNNs) represent a revolutionary breakthrough in improving crop productivity and sustainability when integrated into real-time monitoring systems for soil health in precision agriculture.... 详细信息
来源: 评论
computer Vision and Image Understanding
SSRN
收藏 引用
SSRN 2022年
作者: Tang, Wenming Gong, Yuanhao Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science The University of Nottingham United Kingdom
Graph neural networks (GNNs) are ideally suited for mesh denoising. However, existing solutions such as those based on graph convolutional networks (GCNs) are built for a fixed graph thus making them not naturally gen... 详细信息
来源: 评论
Dense graph convolutional neural networks on 3D meshes for 3D object segmentation and classification
arXiv
收藏 引用
arXiv 2021年
作者: Tang, Wenming Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence Robotics for Society Shenzhen China School of Computer Science The University of Nottingham United Kingdom
This paper presents new designs of graph convolutional neural networks (GCNs) on 3D meshes for 3D object segmentation and classification. We use the faces of the mesh as basic processing units and represent a 3D mesh ... 详细信息
来源: 评论
5G Light-Emitting Biomedical Robots for Hospital Disinfection
5G Light-Emitting Biomedical Robots for Hospital Disinfectio...
收藏 引用
IEEE International Conference on Emerging & Sustainable Technologies for Power & ICT in a Developing Society (NIGERCON)
作者: Ugochukwu O. Matthew Renata L. Rosa Nwamaka U. Okafor Jazuli S. Kazaure Ogobuchi Daniel Okey Matthew Abiola Oladipupo Lateef Olawale Fatai Victor Nosakhare Oriakhi Demostenes Z. Rodriguez Computer Science Dept Federal University of Lavras Minas Gerais Brazil School of Elect Electronics Engineering University College Dublin Dublin Ireland Electrical Engineering Dept Hussaini Adamu Federal Polytechnic Kazaure Nigeria Center for Engineering Federal University of ABC Sao Paulo Brazil Data Science Department University of Salford Manchester England UK Robotics and Automation University of Salford Manchester England UK
Hospital-acquired infections (HAIs) pose a significant challenge to healthcare systems worldwide, exacerbated by the COVID-19 pandemic. Current disinfection methods often fall short in ensuring comprehensive steriliza... 详细信息
来源: 评论
IoT Intervention in the monitoring of aquaponics metrics and control of input schedule
IoT Intervention in the monitoring of aquaponics metrics and...
收藏 引用
Smart Devices (ICSD), International Conference on
作者: Pooja Malik Praveen Kumar Malik Gotte Ranjith Kumar Jyoti S. Bali Anshul Mahajan M. Muhsen Hassan School of Electronics and Electrical Engineering Lovely Professional University Phagwara Punjab India School of Computer Science & Artificial Intelligence SR University Warangal Dept of Robotics and Automation Symbiosis Institute of Technology Symbiosis International (Deemed University) Pune The Islamic University Najaf Iraq
The extensive use of technology across several Modern civilization is clearly impacted by technology, with cutting-edge techniques and tools playing critical roles in sectors including healthcare, business, agricultur... 详细信息
来源: 评论
Modelling and Control of a Trailer Sprayer for Precision Spraying
Modelling and Control of a Trailer Sprayer for Precision Spr...
收藏 引用
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)
作者: André Baltazar Filipe N. Santos Antόnio Paulo Moreira Salviano Pinto Soares M. J. C. S. Reis José Boaventura Cunha CRIIS-Centre for Robotics in Industry and Intelligent Systems INESC TEC—Institute for Systems and Computer Engineering Technology and Science Porto Portugal ECT—School of Science and Technology UTAD—University of Trás-os-Montes and Alto Douro Vila Real Portugal FEUP—Faculty of Engineering University of Porto Porto Portugal Institute of Electronics and Informatics Engineering of Aveiro (IEETA) Portugal Intelligent Systems Associate Laboratory (LASI) Portugal
Precision spraying in agriculture is crucial for optimizing the application of pesticides while minimizing environmental impact. Despite significant advancements in control models for spraying systems, predictive cont... 详细信息
来源: 评论
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
NTIRE 2023 HR NonHomogeneous Dehazing Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Ancuti, Codruta O. Ancuti, Cosmin Vasluianu, Florin-Alexandru Timofte, Radu Zhou, Han Dong, Wei Liu, Yangyi Chen, Jun Liu, Huan Li, Liangyan Wu, Zijun Dong, Yubo Li, Yuyan Qiu, Tian He, Yu Lu, Yonghong Wu, Yinwei Jiang, Zhenxiang Liu, Songhua Yang, Xingyi Jing, Yongcheng Benjdira, Bilel Ali, Anas M. Koubaa, Anis Yang, Hao-Hsiang Chen, I-Hsiang Chen, Wei-Ting Huang, Zhi-Kai Chen, Yi-Chung Hsieh, Chia-Hsuan Chang, Hua-En Chiang, Yuan-Chun Kuo, Sy-Yen Guo, Yu Gao, Yuan Liu, Ryan Wen Lu, Yuxu Qu, Jingxiang He, Shengfeng Ren, Wenqi Hoang, Trung Zhang, Haichuan Yazdani, Amirsaeed Monga, Vishal Yang, Lehan Wu, Alex Jiahao Mai, Tiancheng Cong, Xiaofeng Yin, Xuemeng Yin, Xuefei Emad, Hazim Abdallah, Ahmed Yasser, Yahya Elshahat, Dalia Elbaz, Esraa Li, Zhan Kuang, Wenqing Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhang, Zhao Wei, Yanyan Wang, Junhu Zhao, Suiyi Zheng, Huan Guo, Jin Sun, Yangfan Liu, Tianli Hao, Dejun Jiang, Kui Sarvaiya, Anjali Prajapati, Kalpesh Patra, Ratnadeep Barik, Pragnesh Rathod, Chaitanya Upla, Kishor Raja, Kiran Ramachandra, Raghavendra Busch, Christoph ETcTI Universitatea Politehnica Timisoara Romania ICTEAM UCL Belgium Computer Vision Lab University of Wuerzburg Germany Computer Vision Lab ETH Zurich Switzerland Department of Electrical and Computer Engineering McMaster University Canada Department of Electrical and Computer Engineering University of Alberta Canada McMaster University Canada Xidian University China Research Institute Singapore National University of Singapore Singapore University of Sydney Australia Robotics and Internet-of-Things Laboratory Prince Sultan University Riyadh12435 Saudi Arabia Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan Wuhan University of Technology China Singapore Management University Singapore Singapore Sun Yat-sen University China Electrical Engineering Department Pennsylvania State University United States The University of Sydney Australia Southeast University China University of California Los Angeles United States Beijing Jiaotong University China Mansoura Univeristy Egypt College of Information Science and Technology Jinan University China Department of Information Technology Uppsala University Sweden Hefei University of Technology China Zhejiang Dahua Technology China Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technology Norway
This study assesses the outcomes of the NTIRE 2023 Challenge on Non-Homogeneous Dehazing, wherein novel techniques were proposed and evaluated on new image dataset called HD-NH-HAZE. The HD-NH-HAZE dataset contains 50... 详细信息
来源: 评论