The exponential increase in IoT device usage has spawned numerous cyberspace *** devices,sensors,and actuators bridge the gap between physical processes and the cyber network in a cyber-physical system(CPS).Cyber-phys...
详细信息
The exponential increase in IoT device usage has spawned numerous cyberspace *** devices,sensors,and actuators bridge the gap between physical processes and the cyber network in a cyber-physical system(CPS).Cyber-physical system is a complex system from a security perspective due to the heterogeneous nature of its components and the fact that IoT devices can serve as an entry point for *** adversaries design their attack strategies on systems to gain an advantage at a relatively lower cost,whereas abusive adversaries initiate an attack to inflict maximum damage without regard to cost or *** this paper,a sensor spoofing attack is modelled as a malicious adversary attempting to cause system failure by interfering with the feedback control *** is accomplished by feeding spoofed sensor values to the controller and issuing erroneous commands to the *** on a Simulink-simulated linear CPS support the proof of concept for the proposed abusive ideology,demonstrating three attack *** impact of the evaluations stresses the importance of testing the CPS security against adversaries with abusive settings for preventing ***,the research concludes by highlighting the limitations of the proposed work,followed by recommendations for the future.
This study focuses on the development of a dental problem detection device using the Inception V3 deep learning model and advanced data augmentation techniques. Dental problems such as cavities, impacted wisdom teeth,...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information ...
详细信息
Changes in the Atmospheric Electric Field Signal(AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information implicit in AEFS changes. In this paper, a Fuzzy C-Means(FCM) clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS. First, a time series dataset is created in the time domain using AEFS attributes. The AEFS-based weather is evaluated according to the time-series Membership Degree(MD) changes obtained by inputting this dataset into the FCM. Second, thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus. Thus, a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain. Finally, the rationality and reliability of the proposed method are verified by combining radar charts and expert experience. The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS, and a negative distance-MD correlation is obtained for the first time. The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms.
There are numerous energy minimisation plans that are adopted in today’s data centres (DCs). The highest important ones are those that depend on switching off unused physical machines (PMs). This is usually done by o...
详细信息
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (M...
详细信息
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (ML) and Deep Learning (DL) techniques. This model aims to shed light on the design process of a multilayer optical filter, making it more cost-effective by providing faster and more precise production. In creating this model, a dataset containing data obtained from 3000 (1500 Ge–Al2O3, 1500 Ge–SiO2) simulations previously performed on a computer based on the thicknesses of multilayer structural materials was used. The data are generated using Computational Electromagnetic simulation software based on the Finite-Difference Time-Domain method. To understand the mechanism of the proposed model, two different two-layer coating simulations were studied. While Ge was used as the substrate in both coatings, Al2O3 and SiO2 were used as the second layers. The data set consists of the 3–5 µm and 8–12 µm bands typical for the mid-wave infrared (MWIR) and long-wave infrared (LWIR) bands and includes reflectance values for wavelengths ranging between these spectra. In the specified 2-layer data set, the average reflectance was obtained with a minimum of 0.36 at 515 nm Ge and 910 nm SiO2 thicknesses. This value can be increased by adapting the proposed model to more than 2 layers. Six ML algorithms and a DL model, including artificial neural networks and convolutional neural networks, are evaluated to determine the most effective approach for predicting reflectance properties. Furthermore, in the proposed model, a hyperparameter tuning phase is used in the study to compare the efficiency of ML and DL methods to generate dual-band ARC and maximize the prediction accuracy of the DL algorithm. To our knowledge, this is the first time this has been implemented in this field. The results show that ML models, particularly decision tree (MSE: 0.00000069, RMSE: 0.00083), rand
This study explores the development of a self-driving car using a combination of deep learning (DL), machine learning (ML), computer vision (CV), and convolutional neural networks (CNN). The proposed system aims to si...
详细信息
This work presents an accelerator that performs blind deblurring based on the dark channel prior. The alternating minimization algorithm is leveraged for latent image and blur kernel estimation. A 2-D Laplace equation...
详细信息
Population growth in cities results in a demand for parking lots from an increasing number of automobiles, which frequently contributes to the global problem of traffic congestion. This study presents the smart parkin...
详细信息
Near-field tides prediction for tsunami detection in the coastal area is a significant problem of the cable-based tsunami meter system in north Sipora, Indonesia. The problem is caused by its shallow water condition a...
详细信息
The goal of this study is to build a self-driving robot that can effectively navigate mazes by utilizing sophisticated computer vision algorithms with ROS2. Fusion 360 is used to create the robot model, and ROS2 launc...
详细信息
暂无评论