作者:
CDR. J. RICHARD GAUTHEY USNJOSEPH P. DeTOLLACDR. J. RICHARD GAUTHEY
USN & JOSEPH P. DeTOLLA Cdr. J. Richard Gauthey USN graduated from Cornell University in 1955 with a Bachelor of Mechanical Engineering degree and entered the U.S. Navy through the NROTC program. Following three tours of sea duty he attended the University of California at Berkeley where he earned his Master of Science degree. From 1963 to 1965 he was Project Officer for Aircraft Carriers and Amphibious Ships in the Design Division BUSHIPS. The succeeding three years he was Assistant Repair Superintendent for Surface Ships at the Pearl Harbor Naval Shipyard. After attending the Naval War College he was Maintenance Officer COMINELANT Staff prior to his present assignment as Director Ship Research and Technology Division NAVSHIPS where he has been since 1971. He is a member of both ASNE and SNAME. Joseph P. DeTolla
a native of Philadelphia Pa. received his BS degree in Mechanical Engineering from Drexel University in 1969. He began his career with the U.S. Navy in 1965 as a Mechanical Engineering Trainee in the Philidelphia Naval Shipyard Design Division under the BUSHIPS Cooperative Education Training Program. In 1911 he joined NAVSEC as a Mechanical Engineer in the Fluid Systems Branch. For the past two years he has primarily been involved in conducting alternative auxiliary heating system “tradeoff” studies and in the design of total energy/waste heat recovery systems for the PF 109 Class Sea Control Ship DG/AEGIS and AO 177 Class. He is a registered Professional Engineer in the District of Columbia a member of ASE ASME and SNAME and a candidate for the Master of Engineering Administration degree at The George Washington University.
energy used by U.S. Navy ships is viewed in the context of the national situation. Shipboard usage and the controlling variables are summarized. Research and development being planned by the Navy is described. Efforts...
energy used by U.S. Navy ships is viewed in the context of the national situation. Shipboard usage and the controlling variables are summarized. Research and development being planned by the Navy is described. Efforts relate to conservation of energy as well as consideration of new fuels including hydrogen and liquid hydro-carbon fuels derived from coal, oil shale, and tar sands. A brief account is given of work sponsored by the Department of Interior to produce hydrocarbon fuels, and initial Navy efforts to characterize and evaluate one such fuel is reported. This fuel has been burned at sea in the USS Johnston (DD 821). Development of conservation measures encompasses the utilization of waste heat from gas turbine and diesel engine exhausts and diesel water jackets; more efficient machinery; and reduction of energy requirements. Specific developments discussed include a design methodology to optimize waste heat utilization and higher efficiency gas turbine systems.
暂无评论