咨询与建议

限定检索结果

文献类型

  • 169 篇 期刊文献
  • 88 篇 会议

馆藏范围

  • 257 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 165 篇 工学
    • 116 篇 计算机科学与技术...
    • 101 篇 软件工程
    • 34 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 31 篇 电气工程
    • 29 篇 信息与通信工程
    • 27 篇 光学工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 控制科学与工程
    • 11 篇 交通运输工程
    • 10 篇 机械工程
    • 10 篇 建筑学
    • 9 篇 材料科学与工程(可...
    • 9 篇 土木工程
    • 7 篇 化学工程与技术
    • 4 篇 网络空间安全
  • 95 篇 理学
    • 43 篇 生物学
    • 42 篇 数学
    • 24 篇 物理学
    • 16 篇 统计学(可授理学、...
    • 8 篇 化学
  • 43 篇 管理学
    • 24 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 6 篇 公共管理
  • 32 篇 医学
    • 25 篇 基础医学(可授医学...
    • 24 篇 临床医学
    • 16 篇 药学(可授医学、理...
    • 15 篇 公共卫生与预防医...
  • 7 篇 法学
    • 5 篇 社会学
  • 5 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 11 篇 deep learning
  • 8 篇 image segmentati...
  • 7 篇 feature extracti...
  • 6 篇 magnetic resonan...
  • 6 篇 contrastive lear...
  • 6 篇 predictive model...
  • 6 篇 semantics
  • 5 篇 transformers
  • 5 篇 graph neural net...
  • 5 篇 federated learni...
  • 5 篇 accuracy
  • 4 篇 covid-19
  • 4 篇 semantic segment...
  • 4 篇 recommender syst...
  • 4 篇 signal processin...
  • 4 篇 computational mo...
  • 4 篇 visualization
  • 4 篇 decision making
  • 4 篇 machine learning
  • 4 篇 measurement

机构

  • 13 篇 school of comput...
  • 12 篇 engineering rese...
  • 11 篇 state key labora...
  • 11 篇 national enginee...
  • 8 篇 shandong provinc...
  • 8 篇 manufacturing in...
  • 7 篇 shandong enginee...
  • 7 篇 university of ch...
  • 7 篇 key laboratory o...
  • 6 篇 national enginee...
  • 6 篇 zhejiang bioinfo...
  • 6 篇 engineering rese...
  • 6 篇 faculty of appli...
  • 6 篇 college of compu...
  • 6 篇 wenzhou municipa...
  • 5 篇 china telecom di...
  • 4 篇 text computing &...
  • 4 篇 university of sc...
  • 4 篇 shanghai jiao to...
  • 4 篇 department of co...

作者

  • 11 篇 qin yongbin
  • 10 篇 wang lihui
  • 9 篇 chen yanping
  • 8 篇 huang ruizhang
  • 6 篇 li tianrui
  • 5 篇 zhu yuemin
  • 5 篇 yongbin qin
  • 4 篇 yao dezhong
  • 4 篇 bakas spyridon
  • 4 篇 ronghuan zhang
  • 4 篇 ming li
  • 4 篇 wang shuo
  • 4 篇 seifedine kadry
  • 4 篇 jing zhao
  • 4 篇 ma jun
  • 4 篇 wang li
  • 4 篇 wang bo
  • 4 篇 lihui wang
  • 4 篇 qu xiaobo
  • 4 篇 abualigah laith

语言

  • 236 篇 英文
  • 18 篇 其他
  • 4 篇 中文
检索条件"机构=Engineering Technology Research Center for Computing Intelligence and Data Mining"
257 条 记 录,以下是171-180 订阅
排序:
JGC-IAGCL: Fusing joint graph convolution and intent-aware graph contrastive learning for explainable recommendation
收藏 引用
Information Fusion 2025年 123卷
作者: Yang, Zhi Lin, Chuan Qin, Yongbin Huang, Ruizhang Chen, Yanping Qin, Jiwei State Key Laboratory of Public Big Data Guizhou University Guiyang Guizhou550025 China Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry College of Computer Science and Technology Guizhou University Guiyang Guizhou550025 China College of Information Science and Engineering Xinjiang University Xinjiang Uygur Autonomous Region Urumqi830046 China
Graph contrastive learning (GCL) enhances recommendation accuracy by leveraging self-supervised features to refine node representations from large-scale unlabeled data. Traditional GCL-based recommendation models typi... 详细信息
来源: 评论
UniFault: A Fault Diagnosis Foundation Model from Bearing data
arXiv
收藏 引用
arXiv 2025年
作者: Eldele, Emadeldeen Ragab, Mohamed Qing, Xu Edward Chen, Zhenghua Wu, Min Li, Xiaoli Lee, Jay Institute for Infocomm Research A*STAR Singapore138632 Singapore Centre for Frontier AI Research A*STAR Singapore138632 Singapore Propulsion and Space Research Center Technology Innovation Institute Abu Dhabi9639 United Arab Emirates College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore Center for Industrial Artificial Intelligence Department of Mechanical Engineering A. James Clark School of Engineering University of Maryland MD20742 United States
Machine fault diagnosis (FD) is a critical task for predictive maintenance, enabling early fault detection and preventing unexpected failures. Despite its importance, existing FD models are operation-specific with lim... 详细信息
来源: 评论
A unified framework of intelligent vehicle damage assessment based on computer vision technology  2
A unified framework of intelligent vehicle damage assessment...
收藏 引用
2nd IEEE International Conference on Automation, Electronics and Electrical engineering, AUTEEE 2019
作者: Zhu, Xianglei Liu, Sen Zhang, Peng Duan, Yihai Automotive Data Center China Automotive Technology and Research Center Co. Ltd China College of Intelligence and Computing Tianjin University China Tianjin International Engineering Institute Tianjin University China
Due to the development of deep learning, in recent years, the field of computer vision grows rapidly. A large amount of computer vision technologies have been applied in actual problems. At present, the industry of ve... 详细信息
来源: 评论
DynaComm: Accelerating distributed CNN training between edges and clouds through dynamic communication scheduling
arXiv
收藏 引用
arXiv 2021年
作者: Cai, Shangming Wang, Dongsheng Wang, Haixia Lyu, Yongqiang Xu, Guangquan Zheng, Xi Vasilakos, Athanasios V. Department of Computer Science and Technology Tsinghua University Beijing100084 China Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Cyberspace Security Research Center Peng Cheng Laboratory Shenzhen518066 China Big Data School Qingdao Huanghai University Qingdao266427 China College of Intelligence and Computing Tianjin University Tianjin300350 China Department of Computing Macquarie University SydneyNSW2109 Australia College of Mathematics and Computer Science Fuzhou University Fuzhou350116 China School of Electrical and Data Engineering University of Technology Sydney Australia Department of Computer Science Electrical and Space Engineering Lulea University of Technology Lulea97187 Sweden
To reduce uploading bandwidth and address privacy concerns, deep learning at the network edge has been an emerging topic. Typically, edge devices collaboratively train a shared model using real-time generated data thr... 详细信息
来源: 评论
AI exposure predicts unemployment risk
arXiv
收藏 引用
arXiv 2023年
作者: Frank, Morgan R. Ahn, Yong-Yeol Moro, Esteban Department of Informatics and Networked Systems University of Pittsburgh PittsburghPA15216 United States Digital Economy Lab Institute for Human-Centered Artificial Intelligence Stanford University StanfordCA94305 United States Media Laboratory Massachusetts Institute of Technology CambridgeMA02139 United States Connection Science Massachusetts Institute of Technology CambridgeMA United States Center for Complex Networks and Systems Research Luddy School of Informatics Computing and Engineering Indiana University BloomingtonIN United States Indiana University Network Science Institute Indiana University BloomingtonIN United States Department of Mathematics & GISC Universidad Carlos III de Madrid Leganes28911 Spain Institute for Data Systems and Society Massachusetts Institute of Technology CambridgeMA United States
Is artificial intelligence (AI) disrupting jobs and creating unemployment? Despite many attempts to quantify occupations' exposure to AI, inconsistent validation obfuscates the relative benefits of each approach. ... 详细信息
来源: 评论
Optimizing biomedical ontology alignment in lexical vector space
Optimizing biomedical ontology alignment in lexical vector s...
收藏 引用
作者: Xue, Xingsi Wu, Xiaojing Fujian Key Lab for Automotive Electronics and Electric Drive Fujian University of Technology Fuzhou Fujian Minhou China College of Information Science and Engineering Fujian University of Technology Fuzhou Fujian Minhou China Intelligent Information Processing Research Center Fujian University of Technology Fuzhou Fujian Minhou China Institute of Artificial Intelligence Fujian University of Technology Fuzhou Fujian Minhou China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou Fujian Minhou China
Biomedical ontology matching dedicates to find two heterogeneous ontologies' alignment and address their heterogeneity problem. Typically, a biomedical ontology has various biomedical concepts that are described w... 详细信息
来源: 评论
MassSpecGym: a benchmark for the discovery and identification of molecules  24
MassSpecGym: a benchmark for the discovery and identificatio...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Roman Bushuiev Anton Bushuiev Niek F. de Jonge Adamo Young Fleming Kretschmer Raman Samusevich Janne Heirman Fei Wang Luke Zhang Kai Dührkop Marcus Ludwig Nils A. Haupt Apurva Kalia Corinna Brungs Robin Schmid Russell Greiner Bo Wang David S. Wishart Li-Ping Liu Juho Rousu Wout Bittremieux Hannes Rost Tytus D. Mak Soha Hassoun Florian Huber Justin J.J. van der Hooft Michael A. Stravs Sebastian Böcker Josef Sivic Tomáš Pluskal Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Czech Institute of Informatics Robotics and Cybernetics Czech Technical University Czech Institute of Informatics Robotics and Cybernetics Czech Technical University Bioinformatics Group Wageningen University & Research Department of Computer Science University of Toronto Chair for Bioinformatics Institute for Computer Science Friedrich Schiller University Jena Department of Computer Science University of Antwerp Department of computing science University of Alberta and Alberta Machine Intelligence Institute Department of Molecular Genetics University of Toronto Bright Giant GmbH Department of Computer Science Tufts University Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Department of computing science and Department of Biological Sciences University of Alberta Department of Computer Science Aalto University Mass Spectrometry Data Center National Institute of Standards and Technology Department of Computer Science and Department of Chemical and Biological Engineering Tufts University Centre for Digitalisation and Digitality University of Applied Sciences Düsseldorf Bioinformatics Group Wageningen University & Research and Department of Biochemistry University of Johannesburg Eawag: Swiss Federal Institute of Aquatic Science and Technology
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throu...
来源: 评论
Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on technology and Society 2022年 第4期3卷 272-289页
作者: Allahabadi, Himanshi Amann, Julia Balot, Isabelle Beretta, Andrea Binkley, Charles Bozenhard, Jonas Bruneault, Frederick Brusseau, James Candemir, Sema Cappellini, Luca Alessandro Chakraborty, Subrata Cherciu, Nicoleta Cociancig, Christina Coffee, Megan Ek, Irene Espinosa-Leal, Leonardo Farina, Davide Fieux-Castagnet, Genevieve Frauenfelder, Thomas Gallucci, Alessio Giuliani, Guya Golda, Adam Van Halem, Irmhild Hildt, Elisabeth Holm, Sune Kararigas, Georgios Krier, Sebastien A. Kuhne, Ulrich Lizzi, Francesca Madai, Vince I. Markus, Aniek F. Masis, Serg Mathez, Emilie Wiinblad Mureddu, Francesco Neri, Emanuele Osika, Walter Ozols, Matiss Panigutti, Cecilia Parent, Brendan Pratesi, Francesca Moreno-Sanchez, Pedro A. Sartor, Giovanni Savardi, Mattia Signoroni, Alberto Sormunen, Hanna-Maria Spezzatti, Andy Srivastava, Adarsh Stephansen, Annette F. Theng, Lau Bee Tithi, Jesmin Jahan Tuominen, Jarno Umbrello, Steven Vaccher, Filippo Vetter, Dennis Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Ey Netherlands Enterprise Intelligence Department Amsterdam1083 HP Netherlands Eth Zurich Health Ethics and Policy Lab Department of Health Sciences and Technology Zürich8092 Switzerland Center for Diplomatic and Strategic Studies Postgraduate Studies in Diplomacy and International Relations Paris75015 France Pisa56124 Italy Hackensack Meridian Health Bioethics Center EdisonNJ08820 United States University of Oxford Faculty of Philosophy OxfordOX2 6GG United Kingdom Collège André- Laurendeau Philosophie Department MontrealQCH8N 2J4 Canada Université du Québec À Montréal École des Médias MontrealQCH2L 2C4 Canada Pace University Philosophy Department New YorkNY10038 United States The Ohio State University Wexner Medical Center Department of Radiology ColumbusOH43210 United States Humanitas Research Hospital Department of Radiology Milan20089 Italy Humanitas University Department of Biomedical Sciences Milan20089 Italy University of New England Faculty of Science Agriculture Business and Law ArmidaleNSW2351 Australia University of Technology Sydney Faculty of Engineering and Information Technology SydneyNSW2007 Australia Scuola Superiore Sant'Anna European Centre of Excellence on the Regulation of Robotics and Ai Pisa56127 Italy University of Bremen Group of Computer Architecture Bremen28359 Germany New York University Grossman School of Medicine Division of Infectious Diseases and Immunology Department of Medicine New YorkNY10016 United States Digital Institute Ai Research Section Stockholm16731 Sweden Arcada University of Applied Sciences Department of Business Management and Analytics Helsinki00550 Finland University of Brescia Radiological Sciences and Public Health Department of Medical and Surgical Specialties Brescia25121 Italy Sncf Reseau Sa Ethique Groupe La Plaine93418 France Institute of Diagnostic and Interventional Radiology University Hospital Zurich Zürich8091 Switzerland Eindhoven University of Tech
This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of he... 详细信息
来源: 评论
Correction: AI content detection in the emerging information ecosystem: new obligations for media and tech companies
收藏 引用
Ethics and Information technology 2024年 第4期26卷 1-2页
作者: Knott, Alistair Pedreschi, Dino Jitsuzumi, Toshiya Leavy, Susan Eyers, David Chakraborti, Tapabrata Trotman, Andrew Sundareswaran, Sundar Baeza-Yates, Ricardo Biecek, Przemyslaw Weller, Adrian Teal, Paul D. Basu, Subhadip Haklidir, Mehmet Morini, Virginia Russell, Stuart Bengio, Yoshua Social Media Governance Project Global Partnership on AI Montreal Canada School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand University of Pisa Pisa Italy Chuo University Tokyo Japan Insight SFI Research Centre for Data Analytics School of Information and Communication University College Dublin Dublin Ireland School of Computing University of Otago Dunedin New Zealand Alan Turing Institute London United Kingdom University College London London United Kingdom Institute for Experiential AI Northeastern University Silicon Valley USA Warsaw University of Technology Warsaw Poland University of Cambridge Cambridge United Kingdom Computer Science and Engineering Department Jadavpur University Kolkata India Artificial Intelligence Institute Tubitak Bilgem Gebze Türkiye Center for Human-Compatible AI UC Berkeley Berkeley USA Mila - Quebec AI Institute Montreal Canada University of Montreal Montreal Canada
来源: 评论
IoT-enabled social relationships meet artificial social intelligence
arXiv
收藏 引用
arXiv 2021年
作者: Dhelim, Sahraoui Ning, Huansheng Farha, Fadi Chen, Liming Atzori, Luigi Daneshmand, Mahmoud The School of Computer and Communication Engineering University of Science and Technology Beijing Beijing100083 China Beijing Engineering Research Center for Cyberspace Data Analysis and Applications Beijing China The School of Computing Ulster University NewtownabbeyBT37 0QB United Kingdom The Department of Electrical and Electronic Engineering University of Cagliari piazza d'Armi Cagliari09123 Italy The Department of Business Intelligence and Analytics The Department of Computer Science Stevens Institute of Technology Hoboken United States
With the recent advances of the Internet of Things, and the increasing accessibility to ubiquitous computing resources and mobile devices, the prevalence of rich media contents, and the ensuing social, economic, and c... 详细信息
来源: 评论