咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 电气工程
    • 3 篇 计算机科学与技术...
    • 2 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 中西医结合
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...

主题

  • 3 篇 deep learning
  • 3 篇 predictive model...
  • 2 篇 uncertainty
  • 1 篇 reliability
  • 1 篇 multiplanar reco...
  • 1 篇 ensemble learnin...
  • 1 篇 regression
  • 1 篇 task analysis
  • 1 篇 flat panel compu...
  • 1 篇 plane regression
  • 1 篇 interpretable ma...
  • 1 篇 neural networks
  • 1 篇 optimization
  • 1 篇 trustworthy mach...
  • 1 篇 computational mo...
  • 1 篇 multi-modal dist...
  • 1 篇 uncertainty esti...
  • 1 篇 bayes methods
  • 1 篇 network embeddin...
  • 1 篇 machine learning

机构

  • 1 篇 friedrich alexan...
  • 1 篇 max planck insti...
  • 1 篇 european lab lea...
  • 1 篇 berlin inst fdn ...
  • 1 篇 natl acad sci & ...
  • 1 篇 friedrich alexan...
  • 1 篇 siemens healthca...
  • 1 篇 munich center fo...
  • 1 篇 fraunhofer heinr...
  • 1 篇 department of co...
  • 1 篇 ellis unit berli...
  • 1 篇 berlin machine l...
  • 1 篇 univ tubingen ex...
  • 1 篇 inst sci informa...
  • 1 篇 seoul natl univ ...
  • 1 篇 univ tubingen ex...
  • 1 篇 european lab lea...
  • 1 篇 bg trauma ctr lu...
  • 1 篇 institute for hu...
  • 1 篇 explainable mach...

作者

  • 2 篇 lee jungwoo
  • 1 篇 cho jaehak
  • 1 篇 joo hyungjun
  • 1 篇 maier andreas
  • 1 篇 kunze holger
  • 1 篇 letzgus simon
  • 1 篇 wagner patrick
  • 1 篇 wu shuchen
  • 1 篇 schulz eric
  • 1 篇 samek wojciech
  • 1 篇 el barbari jan s...
  • 1 篇 han hyeonggeun
  • 1 篇 montavon gregoir...
  • 1 篇 kordon florian
  • 1 篇 han seungyub
  • 1 篇 lederer jonas
  • 1 篇 doerrich sebasti...
  • 1 篇 alaniz stephan
  • 1 篇 mueller klaus-ro...
  • 1 篇 akata zeynep

语言

  • 4 篇 英文
  • 1 篇 其他
检索条件"机构=Explainable Machine Learning Lab"
5 条 记 录,以下是1-10 订阅
排序:
Distributional Prototypical Methods for Reliable Explanation Space Construction
收藏 引用
IEEE ACCESS 2023年 11卷 34821-34834页
作者: Joo, Hyungjun Kim, Jaemyung Han, Hyeonggeun Lee, Jungwoo Seoul Natl Univ Dept Elect & Comp Engn Commun & Machine Learning Lab Seoul 08826 South Korea Univ Tubingen Explainable Machine Learning Lab Cluster Excellence Machine Learning Tubingen Germany
As deep learning has been successfully deployed in diverse applications, there is an ever increasing need to explain its decision. To explain decisions, case-based reasoning has proved to be effective in many areas. T... 详细信息
来源: 评论
Deterministic Uncertainty Estimation for Multi-Modal Regression With Deep Neural Networks
收藏 引用
IEEE ACCESS 2025年 13卷 45281-45289页
作者: Cho, Jaehak Kim, Jae Myung Han, Seungyub Lee, Jungwoo Seoul Natl Univ Interdisciplinary Program Artificial Intelligence Cognit & Machine Learning Lab Seoul 08826 South Korea Seoul Natl Univ Dept Elect & Comp Engn NextQuantum Seoul 08826 South Korea Univ Tubingen Explainable Machine Learning Lab Cluster Excellence Machine Learning D-72076 Tubingen Germany
Prediction interval (PI) is a common method to represent predictive uncertainty in regression by deep neural networks. This paper proposes an extension of the prediction interval by using a union of disjoint intervals... 详细信息
来源: 评论
Fast 3D YOLOv3 based standard plane regression of vertebral bodies in intra-operative CBCT volumes
收藏 引用
JOURNAL OF MEDICAL IMAGING 2023年 第3期10卷 034503页
作者: Doerrich, Sebastian Kordon, Florian Denzinger, Felix El Barbari, Jan S. Privalov, Maxim Vetter, Sven Y. Maier, Andreas Kunze, Holger Otto Friedrich Univ Bamberg Chair Explainable Machine Learning Bamberg Germany Friedrich Alexander Univ Erlangen Nuremberg Pattern Recognit Lab Erlangen Germany Siemens Healthcare GmbH Forchheim Germany Friedrich Alexander Univ Erlangen Nuremberg Erlangen Grad Sch Adv Opt Technol Erlangen Germany BG Trauma Ctr Ludwigshafen Ludwigshafen Germany
PurposeMobile C-arm systems represent the standard imaging devices within the field of spine surgery. In addition to 2D imaging, they allow for 3D scans while preserving unrestricted patient access. For viewing, the a... 详细信息
来源: 评论
Discovering Chunks in Neural Embeddings for Interpretability
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Shuchen Alaniz, Stephan Schulz, Eric Akata, Zeynep Explainable Machine Learning Lab Helmholtz Munich Germany Max Planck Institute for Biological Cybernetics Germany Munich Center for Machine Learning Germany Department of Computer Science Technical University of Munich Germany Institute for Human-Centered AI Helmholtz Munich Germany
Understanding neural networks is challenging due to their high-dimensional, interacting components. Inspired by human cognition, which processes complex sensory data by chunking it into recurring entities, we propose ... 详细信息
来源: 评论
Toward explainable Artificial Intelligence for Regression Models A methodological perspective
收藏 引用
IEEE SIGNAL PROCESSING MAGAZINE 2022年 第4期39卷 40-58页
作者: Letzgus, Simon Wagner, Patrick Lederer, Jonas Samek, Wojciech Mueller, Klaus-Robert Montavon, Gregoire Tech Univ Berlin Machine Learning Grp D-10587 Berlin Germany Tech Univ Berlin Comp Sci D-10587 Berlin Germany Fraunhofer Heinrich Hertz Inst Artificial Intelligence & Explainable AI Grp D-10587 Berlin Germany Berlin Inst Fdn Learning & Data D-10587 Berlin Germany European Lab Learning & Intelligent Syst Unit Ber D-10587 Berlin Germany TU Berlin Comp Sci D-10583 Berlin Germany Korea Univ Seoul 136713 South Korea Berlin Machine Learning Ctr Berlin Germany Berlin Big Data Ctr D-10583 Berlin Germany Inst Sci Informat 3501 Market St Philadelphia PA 19104 USA German Natl Acad Sci Leopoldina Halle Germany Berlin Brandenburg Acad Sci Berlin Germany Natl Acad Sci & Engn Washington DC USA ELLIS Unit Berlin Berlin Germany European Lab Learning & Intelligent Syst Unit Ber Berlin Germany
In addition to the impressive predictive power of machine learning (ML) models, more recently, explanation methods have emerged that enable an interpretation of complex nonlinear learning models, such as deep neural n... 详细信息
来源: 评论