Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and r...
详细信息
Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and relations, or dynamic KGs with temporal characteristics, faltering in their generalization to constantly evolving KGs with possible irregular entity drift. Thus, in this paper, we propose a novel link prediction model based on the embedding representation to handle the incompleteness of KGs with entity drift, termed as DCEL. Unlike traditional link prediction, DCEL could generate precise embeddings for drifted entity without imposing any regular temporal characteristic. The drifted entity is added into the KG with its links to the existing entity predicted in an incremental fashion with no requirement to retrain the whole KG for computational efficiency. In terms of DCEL model, it fully takes advantages of unstructured textual description, and is composed of four modules, namely MRC (Machine Reading Comprehension), RCAA (Relation Constraint Attentive Aggregator), RSA (Relation Specific Alignment) and RCEO (Relation Constraint Embedding Optimization). Specifically, the MRC module is first employed to extract short texts from long and redundant descriptions. Then, RCAA is used to aggregate the embeddings of textual description of drifted entity and the pre-trained word embeddings learned from corpus to a single text-based entity embedding while shielding the impact of noise and irrelevant information. After that, RSA is applied to align the text-based entity embedding to graph-based space to obtain the corresponding graph-based entity embedding, and then the learned embeddings are fed into the gate structure to be optimized based on the RCEO to improve the accuracy of representation learning. Finally, the graph-based model TransE is used to perform link prediction for drifted entity. Extensive experiments conducted on benchmark datasets in terms of evaluat
In the last years, research on Web mining has reached maturity and has broadened in scope. Two different but interrelated research threads have emerged, based on the dual nature of the Web: – The Web is a practically...
详细信息
ISBN:
(数字)9783540301233
ISBN:
(纸本)9783540232582
In the last years, research on Web mining has reached maturity and has broadened in scope. Two different but interrelated research threads have emerged, based on the dual nature of the Web: – The Web is a practically in?nite collection of documents: The acquisition and - ploitation of information from these documents asks for intelligent techniques for information categorization, extraction and search, as well as for adaptivity to the interests and background of the organization or person that looks for information. – The Web is a venue for doing business electronically: It is a venue for interaction, information acquisition and service exploitation used by public authorities, n- governmental organizations, communities of interest and private persons. When observed as a venue for the achievement of business goals, a Web presence should be aligned to the objectives of its owner and the requirements of its users. This raises the demand for understandingWeb usage, combining it with other sources of knowledge inside an organization, and deriving lines of action. ThebirthoftheSemanticWebatthebeginningofthedecadeledtoacoercionofthetwo threadsintwoaspects:(i)theextractionofsemanticsfromtheWebtobuildtheSemantic Web;and(ii)theexploitationofthesesemanticstobettersupportinformationacquisition and to enhance the interaction for business and non-business purposes. Semantic Web mining encompasses both aspects from the viewpoint of knowledge discovery.
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralque...
详细信息
ISBN:
(数字)9783540476986
ISBN:
(纸本)9783540476979
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di?ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e?ort. Nowhere may they be more pertinent, however, than in KD from Web data (“Web mining”). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies.
This book features a collection of high-quality, peer-reviewed papers presented at the Sixth International Conference on Intelligent Computing and Communication (ICICC 2022) organized by Department of computerscience...
详细信息
ISBN:
(数字)9789819915880
ISBN:
(纸本)9789819915873
This book features a collection of high-quality, peer-reviewed papers presented at the Sixth International Conference on Intelligent Computing and Communication (ICICC 2022) organized by Department of computerscience and Engineering, G. Narayanamma Institute of Technology and science (for women) Autonomous, Hyderabad, India, on November 18–19, 2022. It focuses on innovation paradigms in system knowledge, intelligence, and sustainability that can be applied to provide practical solutions to a number of problems in society, the environment, and industry. Further, the book also addresses the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in various disciplines of science, technology, and healthcare.
The rise of social media has led to vast amounts of user-generated content, with emotions ranging from joy to anger. Negative comments often target individuals, communities, or brands, prompting successful efforts to ...
详细信息
The rise of social media has led to vast amounts of user-generated content, with emotions ranging from joy to anger. Negative comments often target individuals, communities, or brands, prompting successful efforts to detect harmful speech such as hate speech, cyberbullying, and abuse. Recently, another type of speech referred to as ‘Hope Speech’ has gained attention from the research community. Hope speech consists of positive affirmations or words of reassurance, encouragement, consolation or motivation offered to the affected individual/ community during the lean periods of life. However, there has been relatively less research focused on the detection of hope speech, more particularly in low-resource languages. This paper, therefore, attempts to develop an ensemble model for detecting hope speech in some low-resource languages. data for four different languages, namely English, Kannada, Malayalam and Tamil are obtained and experimented with different deep learning-based models. An ensemble model is proposed to combine the advantages of the better performing models. Experimental results demonstrate the superior performance of the proposed Ensemble (LSTM, mBERT, XLM-RoBERTa) model compared to individual models based on data from all four languages (weighted average F1-score for English is 0.93; for Kannada is 0.74; for Malayalam is 0.82; and for Tamil is 0.60). Thus, the proposed ensemble model proves to be a suitable approach for hope speech detection in the given low resource languages.
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge Computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
暂无评论