Consolidating the Internet of Things (IoT) and software Defined Networks (SDN) has been a great concern among researchers. In IoT, Wireless Sensor Network (WSN) is important communication component. Due to the large v...
详细信息
This research proposes a novel artificial decision-marking framework suitable for modern smart sensor networks and carbon-based biosensor systems which deals with uncertainty and the peculiarity of the data. To achiev...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
This paper introduces an intelligent traffic flow prediction system that combines data twinning and deep learning, aiming to improve the prediction accuracy and model adaptability by integrating grey prediction model ...
详细信息
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
Meniscal tears, a prevalent orthopedic condition caused by abrupt knee movements, excessive load, or injury, require an accurate diagnosis for effective treatment. This study investigates the vision transformer (ViT) ...
详细信息
The novel Coronavirus (COVID-19) spread rapidly around the world and caused overwhelming effects on the health and economy of the world. It first appeared in Wuhan city of China and was declared a pandemic by the Worl...
详细信息
The problem of determining the type of grapevine leave (GL) has an important place in the agricultural field and especially in the field of viticulture. It is a foodstuff that is consumed as a table especially in ever...
详细信息
Considering the increasing and widespread use of chatbots, it is of great importance to provide methods and tools to address ethical concerns and to make users aware of various aspects of a chatbot, including non-func...
详细信息
Ear diseases are defined as pathological conditions that indicate dysfunction or abnormal function of the ear organ, which is part of the auditory system of living organisms that regulates hearing and balance function...
详细信息
Ear diseases are defined as pathological conditions that indicate dysfunction or abnormal function of the ear organ, which is part of the auditory system of living organisms that regulates hearing and balance functions. These diseases usually manifest as conditions that affect the internal components of the ear structure and can manifest themselves with symptoms such as hearing loss, ear pain, balance problems, and fluid accumulation in the ear. The accuracy of the diagnosis depends on expert knowledge and subjective opinion. This method is prone to human error. This study presents a novel computer-aided diagnosis system for otoscope images of ear diseases, utilizing a vision transformer-based feature extractor combined with machine learning classifiers to provide accurate second opinions for ENT specialists. For this purpose, a new model based on state-of-the-art vision transformer feature extractor and machine learning models is proposed. In the experimental study, the dataset, comprising 880 eardrum images categorized into four classes (CSOM, earwax, myringosclerosis, and normal), was split into training (70%), validation (10%), and testing (20%) subsets. Each image was preprocessed to 420 × 380 pixels to fit the input dimensions of the models. The vision transformer architecture was utilized for feature extraction, followed by classification using various machine learning algorithms including kNN, SVM, and random forest. As a result, the model using vision transformer feature extractor and k-nearest neighbors (kNN) algorithm achieved 99.00% accuracy. In this study, a deep learning-based and computer-aided diagnosis system, in other words, a computational model, was developed instead of the current human error-prone disease diagnosis method used by ear nose throat (ENT) specialists. The main purpose of the deep learning-based decision support system is to support the diagnosis process where expert knowledge is difficult to access and to provide an alternative opi
暂无评论