We developed an information system using an object-oriented programming language and a distributed database (DDB) consisting of multiple interconnected databases across a computer network, managed by a distributed dat...
详细信息
Machine learning algorithms face important implementation difficulties due to imbalanced learning since the Synthetic Minority Oversampling Technique (SMOTE) helps improve performance through the creation of new minor...
详细信息
The utilization of Data-Driven Machine Learning (DDML) models in the healthcare sector poses unique challenges due to the crucial nature of clinical decision-making and its impact on patient outcomes. A primary concer...
详细信息
Deep neural networks (DNNs) are known to be susceptible to various malicious attacks, such as adversarial and backdoor attacks. However, most of these attacks utilize additive adversarial perturbations (or backdoor tr...
详细信息
Nowadays, medical image fusion plays a crucial role in enhancing the diagnosis accuracy and the clinical decision-making process in various healthcare applications. This research work presents a comprehensive stu...
详细信息
Nowadays, medical image fusion plays a crucial role in enhancing the diagnosis accuracy and the clinical decision-making process in various healthcare applications. This research work presents a comprehensive study of the design and implementation of optimized medical image fusion techniques using a combination of software and Field-Programmable Gate Array (FPGA) technologies. The proposed medical image fusion strategy is based on the utilization of Discrete Wavelet Transform (DWT) and Modified Central Force Optimization (MCFO). The implementation of the proposed technique as well as the traditional medical image fusion techniques is considered using an appropriate software design and FPGA. The presented techniques aim to overcome the limitations of traditional fusion techniques by integrating advanced image processing algorithms, optimization algorithms, and parallel computing capabilities offered by FPGA platforms. The first step in the proposed framework is to match the histogram of one of the images with that of the other, so that both images will have the same dynamic range. After that, the DWT is used to decompose the images that should be fused together. Based on some constraints, the MCFO optimization algorithm is used to evaluate the optimum level of decomposition and the optimum parameters for the best fusion quality. Finally, to improve the obtained visual quality and reinforce the information in the fusion result, an additional contrast enhancement step using adaptive histogram equalization is applied to the fusion result. Comparative study between the proposed optimized DWT-based fusion framework, the traditional Principal Component Analysis (PCA), Additive Wavelet Transform (AWT), and DWT-based fusion techniques is presented. Various metrics of fusion quality are considered, including average gradient, standard deviation, local contrast, entropy, edge strength, Peak Signal-to-Noise Ratio (PSNR), Qab/f, and processing time. The proposed optimized DWT-ba
Soldering irons are a hand tool that is indispensable in the process of making small series of electronic devices. Soldering irons have evolved from very simple devices without temperature control to devices with comp...
详细信息
In the field of image forensics,image tampering detection is a critical and challenging *** methods based on manually designed feature extraction typically focus on a specific type of tampering operation,which limits ...
详细信息
In the field of image forensics,image tampering detection is a critical and challenging *** methods based on manually designed feature extraction typically focus on a specific type of tampering operation,which limits their effectiveness in complex scenarios involving multiple forms of *** deep learningbasedmethods offer the advantage of automatic feature learning,current approaches still require further improvements in terms of detection accuracy and computational *** address these challenges,this study applies the UNet 3+model to image tampering detection and proposes a hybrid framework,referred to as DDT-Net(Deep Detail Tracking Network),which integrates deep learning with traditional detection *** contrast to traditional additive methods,this approach innovatively applies amultiplicative fusion technique during downsampling,effectively combining the deep learning feature maps at each layer with those generated by the Bayar noise *** design enables noise residual features to guide the learning of semantic features more precisely and efficiently,thus facilitating comprehensive feature-level ***,by leveraging the complementary strengths of deep networks in capturing large-scale semantic manipulations and traditional algorithms’proficiency in detecting fine-grained local traces,the method significantly enhances the accuracy and robustness of tampered region *** with other approaches,the proposed method achieves an F1 score improvement exceeding 30% on the DEFACTO and DIS25k *** addition,it has been extensively validated on other datasets,including CASIA and *** results demonstrate that this method achieves outstanding performance across various types of image tampering detection tasks.
An image can convey a thousand words. This statement emphasizes the importance of illustrating ideas visually rather than writing them down. Although detailed image representation is typically instructive, there are s...
详细信息
The learning and teaching power of the students in different courses can be different according to their intelligence and talent. One student can be smart in a single course while he/she is lazy in other courses. Afte...
详细信息
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their *** systems analyze users’emotional res...
详细信息
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their *** systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide *** improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music *** paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as ***,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural *** network then predicts ratings for unreviewed music by ***,the system analyses user music listening behaviour and music *** popularity can help to address cold start users as ***,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening *** proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each *** these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across *** number of recommended tracks is aligned with each user’s typical listening *** experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain
暂无评论