Plant diseases can cause severe losses in agricultural production, impacting food security and safety. Early detection of plant diseases is crucial to minimize crop damage and ensure agricultural sustainability. Manua...
详细信息
This paper represents that one of the critical subfields of NLP, SA applies DL techniques to analyze the feelings expressed in text, image, and voice context. As new technology of Web 2.0 emerges, there are many oppor...
详细信息
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environm...
详细信息
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environmental interaction, and overall life quality. Motivated by the desire to empower visually impaired individuals, who face navigational limitations, difficulties in object recognition, and inadequate assistance from traditional technologies, we propose SightAid. This innovative wearable vision system utilizes a deep learning-based framework, addressing the gaps left by current assistive solutions. Traditional methods, such as canes and GPS devices, often fail to meet the nuanced and dynamic needs of the visually impaired, especially in accurately identifying objects, understanding complex environments, and providing essential real-time feedback for independent navigation. SightAid comprises a seven-phase framework involving data collection, preprocessing, and training of a sophisticated deep neural network with multiple convolutional and fully connected layers. This system is integrated into smart glasses with augmented reality displays, enabling real-time object detection and recognition. Interaction with users is facilitated through audio or haptic feedback, informing them about the location and type of objects detected. A continuous learning mechanism, incorporating user feedback and new data, ensures the system's ongoing refinement and adaptability. For performance assessment, we utilized the MNIST dataset, and an Indoor Objects Detection dataset tailored for the visually impaired, featuring images of everyday objects crucial for safe indoor navigation. SightAid demonstrates remarkable performance with accuracy up to 0.9874, recall values between 0.98 and 0.99, F1-scores ranging from 0.98 to 0.99, and AUC-ROC values reaching as high as 0.9999. These metrics significantly surpass those of traditional methods, highlighting SightAid's potential to substan
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla *** today’s technology-driven era,where precise tools f...
详细信息
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla *** today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla *** existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document ***,no prior research has specifically targeted the unique needs of Bangla handwritten city name *** bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name *** emphasis on practical data for system training enhances *** research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal *** study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN *** encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and *** recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
Machine learning (ML) has developed at a superlative rate, accompanying requests spanning various fields. This research investigates the experience of strength data, exceptionally the request of machine learning (ML) ...
详细信息
Industrial process plants use emergency shutdown valves(ESDVs)as safety barriers to protect against hazardous events,bringing the plant to a safe state when potential danger is *** ESDVs are used extensively in offsho...
详细信息
Industrial process plants use emergency shutdown valves(ESDVs)as safety barriers to protect against hazardous events,bringing the plant to a safe state when potential danger is *** ESDVs are used extensively in offshore oil and gas processing plants and have been mandated in the design of such systems from national and international standards and *** paper has used actual ESDV operating data from four mid/late life oil and gas production platforms in the North Sea to research operational relationships that are of interest to those responsible for the technical management and operation of *** first of the two relationships is between the closure time(CT)of the ESDV and the time it remains in the open position,prior to the close *** has been hypothesised that the CT of the ESDV is affected by the length of time that it has been open prior to being closed(Time since the last stroke).In addition to the general analysis of the data series,two sub-categories were created to further investigate this possible relationship for CT and these are“above mean”and“below mean”.The correlations(Pearson's based)resulting from this analysis are in the“weak”and“very weak”*** second relationship investigated was the effect of very frequent closures to assess if this improves the *** operational records for six subjects were analysed to find closures that occurred within a 24 h period of each ***,no discriminating trend was apparent where CT was impacted positively or negatively by the frequent closure *** was concluded that the variance of ESDV closure time cannot be influenced by the technical management of the ESDV in terms of scheduling the operation of the ESDV.
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both th...
详细信息
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both the effective management and early detection of this disease. Feature selection (FS) methods are essential for identifying the most impactful features to improve breast cancer diagnosis. These methods reduce data dimensionality, eliminate irrelevant information, enhance learning accuracy, and improve the comprehensibility of results. However, the increasing complexity and dimensionality of cancer data pose substantial challenges to many existing FS methods, thereby reducing their efficiency and effectiveness. To overcome these challenges, numerous studies have demonstrated the success of nature-inspired optimization (NIO) algorithms across various domains. These algorithms excel in mimicking natural processes and efficiently solving complex optimization problems. Building on these advancements, we propose an innovative approach that combines powerful feature selection methods based on NIO techniques with a soft voting classifier. The NIO techniques employed include the Genetic Algorithm, Cuckoo Search, Salp Swarm, Jaya, Flower Pollination, Whale Optimization, Sine Cosine, Harris Hawks, and Grey Wolf Optimization algorithms. The Soft Voting Classifier integrates various machine learning models, including Support Vector Machines, Gaussian Naive Bayes, Logistic Regression, Decision Tree, and Gradient Boosting. These are used to improve the effectiveness and accuracy of breast cancer diagnosis. The proposed approach has been empirically evaluated using a variety of evaluation measures, such as F1 score, precision, recall, accuracy and Area Under the Curve (AUC), for performance comparison with individual machine learning techniques. The results demonstrate that the soft-voting ensemble technique, particularly when combined with feature selection based on the Jaya
The agricultural area has undergone a significant transformation owing to the progress made in IoT. It is imperative to have a dependable remote monitoring solution right now. This study aims to accomplish two goals. ...
详细信息
Research on real-time data visualization methods is necessary to achieve the most accurate and clear representation of information. Creating specific boards and modifying current platforms are two key tasks in perform...
详细信息
暂无评论