The lack of symptoms in the early stages of liver disease may cause wrong diagnosis of the disease by many doctors and endanger the health of patients. Therefore, earlier and more accurate diagnosis of liver problems ...
详细信息
Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human *** detonation of these landmines results in thousands of casualties reported w...
详细信息
Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human *** detonation of these landmines results in thousands of casualties reported worldwide ***,there is a pressing need to employ diverse landmine detection techniques for their *** effective approach for landmine detection is UAV(Unmanned Aerial Vehicle)based AirborneMagnetometry,which identifies magnetic anomalies in the local terrestrial magnetic *** can generate a contour plot or heat map that visually represents the magnetic field *** the effectiveness of this approach,landmine removal remains a challenging and resource-intensive task,fraughtwith *** computing,on the other hand,can play a crucial role in critical drone monitoring applications like landmine *** processing data locally on a nearby edge server,edge computing can reduce communication latency and bandwidth requirements,allowing real-time analysis of magnetic field *** enables faster decision-making and more efficient landmine detection,potentially saving lives and minimizing the risks involved in the ***,edge computing can provide enhanced security and privacy by keeping sensitive data close to the source,reducing the chances of data exposure during *** paper introduces the MAGnetometry Imaging based Classification System(MAGICS),a fully automated UAV-based system designed for landmine and buried object detection and *** have developed an efficient deep learning-based strategy for automatic image classification using magnetometry dataset *** simulating the proposal in various network scenarios,we have successfully detected landmine signatures present in themagnetometry *** trained models exhibit significant performance improvements,achieving a maximum mean average precision value of 97.8%.
Biomedical literature lacks integration of dynamic drug interaction data for personalized prescriptions. This proposed work is a new hybrid model that enhances drug safety prescriptions by taking into account individu...
详细信息
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding...
详细信息
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding of user requirements,where the users can hardly provide high-quality requirements without any professional knowledge;2)the design of house plan,which mainly focuses on how to capture the effective information from user *** address the above issues,we propose an automatic house design framework,called auto-3D-house design(A3HD).Unlike the previous works that consider the user requirements in an unstructured way(e.g.,natural language),we carefully design a structured list that divides the requirements into three parts(i.e.,layout,outline,and style),which focus on the attributes of rooms,the outline of the building,and the style of decoration,*** the processing of architects,we construct a bubble diagram(i.e.,graph)that covers the rooms′attributes and relations under the constraint of *** addition,we take each outline as a combination of points and orders,ensuring that it can represent the outlines with arbitrary ***,we propose a graph feature generation module(GFGM)to capture layout features from the bubble diagrams and an outline feature generation module(OFGM)for outline ***,we render 3D houses according to the given style requirements in a rule-based *** on two benchmark datasets(i.e.,RPLAN and T3HM)demonstrate the effectiveness of our A3HD in terms of both quantitative and qualitative evaluation metrics.
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing...
详细信息
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing user and product information from a short ***,such previously used approaches do not fairly and efficiently incorporate users’preferences and product *** proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True *** overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or *** proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed *** results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services.
Flood prediction is one of the most critical challenges facing today's world. Predicting the probable time of a flood and the area that might get affected is the main goal of it, and more so for a region like Sylh...
详细信息
Flood prediction is one of the most critical challenges facing today's world. Predicting the probable time of a flood and the area that might get affected is the main goal of it, and more so for a region like Sylhet, Bangladesh where transboundary water flows and climate change have increased the risk of disasters. Accurate flood detection plays a vital role in mitigating these impacts by allowing timely early warnings and strategic planning. Recent advancements in flood prediction research include the development of robust, accurate, and low-cost flood models designed for urban deployment. By applying and utilizing powerful deep learning models show promise in improving the accuracy of prediction and prevention. But those models faced significant issues related to scalability, data privacy concerns and limitations of cross-border data sharing including the inaccuracies in prediction models due to changing climate patterns. To address this, our research adopts the Federated Learning (FL) framework in an effort to train state-of-the-art deep learning models like Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), Feed-Forward Neural Network (FNN) and Temporal Fusion Transformer-Convolutional Neural Network (TFT -CNN) on a 78-year dataset of rainfall, river flow, and meteorological variables from Sylhet and its upstream regions in Meghalaya and Assam, India. This approach promotes data privacy and allows collaborative learning while working under cross-border data-sharing constraints, therefore improving the accuracy of prediction. The results showed that the best-performing FNN model achieved an R-squared value of 0.96, a Mean Absolute Error (MAE) value of 0.02, Percent bias (PBIAS) value of 0.4185 and lower Root Mean Square Error (RMSE) in the FL environment. Explainable AI techniques, such as SHAP, sheds light on the most significant role played by upstream rainfall and river dynamics, particularly from Cherrapunji and the Surma-Kushiyara river system, in d
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
WSN security is a current area of research for many scientists. One of the best security tools for defending the network from malicious assaults or the unauthenticated access is IDS. In this article, we suggest an opt...
详细信息
We present a geometric model of the differential sensitivity of the fidelity error for state transfer in a spintronic network based on the relationship between a set of matrix operators. We show an explicit dependence...
详细信息
Lung cancer is the leading cause of cancer-related fatalities in Indonesia, primarily due to late-stage diagnoses. This study aims to develop a model that employs image processing to classify lung cancer from CT scan ...
详细信息
暂无评论