In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
Recent advancements in deep neural networks (DNNs) have made them indispensable for numerous commercial applications. These include healthcare systems and self-driving cars. Training DNN models typically demands subst...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of p...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of patientscan ensure remote healthcare at home using advanced technologies such as the Internet of Medical Things (IoMT).The IoMT can monitor and transmit sensitive health data;however, it may be vulnerable to various attacks. In thispaper, an efficient healthcare security system is proposed for IoMT applications. In the proposed system, themedical sensors can transmit sensed encrypted health data via a mobile application to the doctor for ***, three consortium blockchains are constructed for load balancing of transactions and reducing transactionlatency. They store the credentials of system entities, doctors' prescriptions and recommendations according to thedata transmitted via mobile applications, and the medical treatment process. Besides, cancelable biometrics areused for providing authentication and increasing the security of the proposed medical system. The investigationalresults show that the proposed system outperforms existing work where the proposed model consumed lessprocessing time by values of 18%, 22%, and 40%, and less energy for processing a 200 KB file by values of 9%,13%, and 17%. Finally, the proposed model consumed less memory usage by values of 7%, 7%, and 18.75%. Fromthese results, it is clear that the proposed system gives a very reliable and secure performance for efficientlysecuring medical applications.
Aspect-based sentiment analysis(ABSA)is a fine-grained *** fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely ***,most existing work...
详细信息
Aspect-based sentiment analysis(ABSA)is a fine-grained *** fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely ***,most existing works on Arabic ABSA content separately address them,assume that aspect terms are preidentified,or use a pipeline *** solutions design different models for each task,and the output from the ATE model is used as the input to the APC model,which may result in error propagation among different steps because APC is affected by ATE *** methods are impractical for real-world scenarios where the ATE task is the base task for APC,and its result impacts the accuracy of ***,in this study,we focused on a multi-task learning model for Arabic ATE and APC in which the model is jointly trained on two subtasks simultaneously in a *** paper integrates themulti-task model,namely Local Cotext Foucse-Aspect Term Extraction and Polarity classification(LCF-ATEPC)and Arabic Bidirectional Encoder Representation from Transformers(AraBERT)as a shred layer for Arabic contextual text *** LCF-ATEPC model is based on a multi-head selfattention and local context focus mechanism(LCF)to capture the interactive information between an aspect and its ***,data augmentation techniques are proposed based on state-of-the-art augmentation techniques(word embedding substitution with constraints and contextual embedding(AraBERT))to increase the diversity of the training *** paper examined the effect of data augmentation on the multi-task model for Arabic *** experiments were conducted on the original and combined datasets(merging the original and augmented datasets).Experimental results demonstrate that the proposed Multi-task model outperformed existing APC *** results were obtained by AraBERT and LCF-ATEPC with fusion layer(AR-LCF-ATEPC-Fusion)and the proposed data augmentation
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Recently, deep learning has been widely employed across various domains. The Convolution Neural Network (CNN), a popular deep learning algorithm, has been successfully utilized in object recognition tasks, such as fac...
详细信息
GPT is widely recognized as one of the most versatile and powerful large language models, excelling across diverse domains. However, its significant computational demands often render it economically unfeasible for in...
详细信息
Nowadays, Android-based devices such as smart phones, tablets, smart watches, and virtual reality headsets have found increasing use in our daily lives. Along with the development of various applications for these dev...
详细信息
This research work focuses on food recognition, especially, the identification of the ingredients from food images. Here, the developed model includes two stages namely: 1) feature extraction;2) classification. Initia...
详细信息
Demand forecasting has emerged as a crucial element in supply chain management. It is essential to identify anomalous data and continuously improve the forecasting model with new data. However, existing literature fai...
详细信息
暂无评论