CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computationa...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computational model to predict the associations between circRNAs and diseases. And there is existing more and more evidence indicates that the combination of multi-biomolecular information can improve the prediction accuracy. We propose a novel computational model for CDA prediction named MBCDA, we collect the multi-biomolecular information including circRNA, disease, miRNA and lncRNA based on 6 databases, and construct three heterogeneous network among them, then the multi-heads graph attention networks are applied to these three networks to extract the features of circRNAs and diseases from different views, the obtained features are put into variational graph auto-encoder(VGAE) network to learn the latent distributions of the nodes, a fully connected neural network is adopted to further process the output of VGAE and uses sigmoid function to obtain the predicted probabilities of circRNA-disease *** a result, MBCDA achieved the values of AUC and AUPR under 5-fold cross-validation of 0.893 and 0.887. MBCDA was applied to the analysis of the top-25 predicted associations between circRNAs and diseases, these experimental results show that our proposed MBCDA is a powerful computational model for CDA prediction.
Nowadays, electronic waste is no longer considered ordinary waste;instead, it is recognized as valuable and hazardous waste containing significant amounts of precious metals. Therefore, it should not be disposed of il...
详细信息
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider sp...
详细信息
Nowadays,smart buildings rely on Internet of things(loT)technology derived from the cloud and fog computing paradigms to coordinate and collaborate between connected *** is characterized by low latency with a wider spread and geographically distributed nodes to support mobility,real-time interaction,and location-based *** provide optimum quality of user life in moderm buildings,we rely on a holistic Framework,designed in a way that decreases latency and improves energy saving and services efficiency with different *** EVent system Specification(DEVS)is a formalism used to describe simulation models in a modular *** this work,the sub-models of connected objects in the building are accurately and independently designed,and after installing them together,we easily get an integrated model which is subject to the fog computing *** results show that this new approach significantly,improves energy efficiency of buildings and reduces ***,with DEVS,we can easily add or remove sub-models to or from the overall model,allowing us to continually improve our designs.
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may ...
详细信息
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the ***,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and *** study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss ***,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed *** results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and *** proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 *** prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designe...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designed with security because they are resource constrained ***,having an accurate IoT security system to detect security attacks is *** Detection Systems(IDSs)using machine learning and deep learning techniques can detect security attacks *** paper develops an IDS architecture based on Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)deep learning *** implement our model on the UNSW-NB15 dataset which is a new network intrusion dataset that cate-gorizes the network traffic into normal and attacks *** this work,interpolation data preprocessing is used to compute the missing ***,the imbalanced data problem is solved using a synthetic data generation *** experiments have been implemented to compare the performance results of the proposed model(CNN+LSTM)with a basic model(CNN only)using both balanced and imbalanced ***,with some state-of-the-art machine learning classifiers(Decision Tree(DT)and Random Forest(RF))using both balanced and imbalanced *** results proved the impact of the balancing *** proposed hybrid model with the balance technique can classify the traffic into normal class and attack class with reasonable accuracy(92.10%)compared with the basic CNN model(89.90%)and the machine learning(DT 88.57%and RF 90.85%)***,comparing the proposed model results with the most related works shows that the proposed model gives good results compared with the related works that used the balance techniques.
作者:
Raut, YashasviChaudhri, Shiv Nath
Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra India
Gas/odor sensors are integral components of sensor systems used in diverse applications such as food quality control, environmental monitoring, medical diagnostics, odor profiling, industrial safety, agriculture, expl...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from ...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault *** biologically inspired strategies allow for effective solutions to intricate physical *** its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization *** utility and benefits have found traction in numerous academic *** its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference *** paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization *** trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
Cyber-physical power systems are vulnerable to cyber-attacks, especially false data injection attacks (FDIAs). FDIAs against distribution system state estimation (DSSE), which alter state estimation (SE) by changing m...
详细信息
Fine Tuning Attribute Weighted Naïve Bayes (FTAWNB) is a reliable modified Naïve Bayes model. Even though it is able to provide high accuracy on ordinal data, this model is sensitive to outliers. To improve ...
详细信息
In the digital world, text data is produced in an unstructured manner across various communication channels. Extracting valuable information from such data with security is crucial and requires the development of tech...
详细信息
暂无评论