Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate *** this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in *** support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the *** the model complexity and the overall model *** fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA *** far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no ***,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA *** indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that *** the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model *** Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
A more advanced deep learning architecture that aims to improve in situ driver safety by perceiving the driving behavior and monitoring the surrounding road environment will be proposed in this study. It will employ d...
详细信息
This research study proposes data-driven approaches to track and maintain prices of food products. It develops an all-inclusive database of market data based on real-time pricing information generated from reporting c...
详细信息
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable gro...
详细信息
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable growth,primarily the use of wind and solar *** achieve the prediction of wind power generation,several deep and machine learning models are constructed in this article as base *** regression models are Deep neural network(DNN),k-nearest neighbor(KNN)regressor,long short-term memory(LSTM),averaging model,random forest(RF)regressor,bagging regressor,and gradient boosting(GB)*** addition,data cleaning and data preprocessing were performed to the *** dataset used in this study includes 4 features and 50530 *** accurately predict the wind power values,we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization(SFSPSO)to optimize the parameters of LSTM *** evaluation criteria were utilized to estimate the efficiency of the regression models,namely,mean absolute error(MAE),Nash Sutcliffe Efficiency(NSE),mean square error(MSE),coefficient of determination(R2),root mean squared error(RMSE).The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99%in predicting the wind power values.
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
For the teaching of agile methods in an IT undergraduate course we developed a gamified blended learning course. We created the course with gamification elements such as videos, quizzes, badges, and points in the lear...
详细信息
Globally, skin diseases are emerging as the most common health problem. It initiates depressive disorder, and it also causes physical health distress. It rarely led to skin cancer in extreme cases. Diagnosing skin dis...
详细信息
Social media platforms serve as significant spaces for users to have conversations, discussions and express their opinions. However, anonymity provided to users on these platforms allows the spread of hate speech and ...
详细信息
The advancements in modern computing technologies have significantly contributed to the development of advanced healthcare monitoring systems., enabling the early detection of critical conditions., such as falls. This...
详细信息
Decision-making is crucial in fully autonomous vehicle operations and is expected to greatly influence future transportation systems. Observing the current driving status of autonomous vehicles is vital for its decisi...
详细信息
Decision-making is crucial in fully autonomous vehicle operations and is expected to greatly influence future transportation systems. Observing the current driving status of autonomous vehicles is vital for its decision-making process. The autonomous connected vehicles on the road send significant data about their movements to the server to maintain continuous training. With the Proof of Authority (PoA) consensus process, blockchain technology provides a valid, decentralised and secure option to improve transactions throughput and minimise delay. The limited computational capacity of vehicles poses a challenge in achieving high accuracy and low latency while training self-driving algorithms. GPT-4V surpassed challenging autonomous systems in scene interpretation and causal thinking. GPT-4V has ability to navigate circumstances without access to database, interpret intentions, and make sound decisions in real-world driving scenarios. The reward function and different driving conditions are organised to allow an optimal search to find the most efficient driving style while ensuring safety. The consequences of the Blockchain-enabled decision-making model (DMM) for Self-Driving Vehicles (SDV) primarily based on GPT-4V and Federated Reinforcement Learning (FRL) would, likely, upgrades in decision-making accuracy, operational performance, statistics integrity, and potentially enhanced learning skills in SDV. Integrating blockchain technology, superior language modelling GPT-4V and FRL may lead to multiplied safety, reliability, and decision-making ability in SDV. This study utilised the Simulation of Urban MObility (SUMO) simulator to assess the ability of SDV to maintain its desired speed consistently and securely in a highway setting using proposed DMM. This study indicates that the suggested DMM, utilising the driving state evaluation approach for SDV, can help these vehicles operate safely and effectively. The performance of the proposed model, such as CPU utilisation
暂无评论