In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environm...
详细信息
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environmental interaction, and overall life quality. Motivated by the desire to empower visually impaired individuals, who face navigational limitations, difficulties in object recognition, and inadequate assistance from traditional technologies, we propose SightAid. This innovative wearable vision system utilizes a deep learning-based framework, addressing the gaps left by current assistive solutions. Traditional methods, such as canes and GPS devices, often fail to meet the nuanced and dynamic needs of the visually impaired, especially in accurately identifying objects, understanding complex environments, and providing essential real-time feedback for independent navigation. SightAid comprises a seven-phase framework involving data collection, preprocessing, and training of a sophisticated deep neural network with multiple convolutional and fully connected layers. This system is integrated into smart glasses with augmented reality displays, enabling real-time object detection and recognition. Interaction with users is facilitated through audio or haptic feedback, informing them about the location and type of objects detected. A continuous learning mechanism, incorporating user feedback and new data, ensures the system's ongoing refinement and adaptability. For performance assessment, we utilized the MNIST dataset, and an Indoor Objects Detection dataset tailored for the visually impaired, featuring images of everyday objects crucial for safe indoor navigation. SightAid demonstrates remarkable performance with accuracy up to 0.9874, recall values between 0.98 and 0.99, F1-scores ranging from 0.98 to 0.99, and AUC-ROC values reaching as high as 0.9999. These metrics significantly surpass those of traditional methods, highlighting SightAid's potential to substan
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing...
详细信息
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing user and product information from a short ***,such previously used approaches do not fairly and efficiently incorporate users’preferences and product *** proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True *** overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or *** proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed *** results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services.
Skin cancer's increasing incidence rates necessitate advanced diagnostic tools. This research uses MobileNet architecture to develop an enhanced system for skin cancer detection. MobileNet's efficient CNN arch...
详细信息
A key goal of clustering is data reduction. In center-based clustering of complex objects therefore not only the number of clusters but also the complexity of the centers plays a crucial role. We propose LBudget Clust...
详细信息
Fine Tuning Attribute Weighted Naïve Bayes (FTAWNB) is a reliable modified Naïve Bayes model. Even though it is able to provide high accuracy on ordinal data, this model is sensitive to outliers. To improve ...
详细信息
Multimodal sentiment analysis on images with textual content is a research area aiming to understand the sentiment conveyed by visual and textual elements in the images. While multimodal sentiment analysis on images a...
详细信息
Diabetic Retinopathy is a disease,which happens due to abnormal growth of blood vessels that causes spots on the vision and vision *** techniques are applied to identify the disease in the early stage with different m...
详细信息
Diabetic Retinopathy is a disease,which happens due to abnormal growth of blood vessels that causes spots on the vision and vision *** techniques are applied to identify the disease in the early stage with different methods and *** Learning(ML)techniques are used for analyz-ing the images andfinding out the location of the *** restriction of the ML is a dataset size,which is used for model *** problem has been overcome by using an augmentation method by generating larger datasets with multidimensional *** models are using only one augmentation tech-nique,which produces limited features of dataset and also lacks in the association of those data during DR detection,so multilevel augmentation is proposed for *** proposed method performs in two phases namely integrated aug-mentation model and dataset correlation(***).It eliminates overfit-ting problem by considering relevant *** method is used for solving the Diabetic Retinopathy problem with a thin vessel identification using the UNET *** based image segmentation achieves 98.3%accuracy when com-pared to RV-GAN and different UNET models with high detection rate.
The incorporation of neural networks into medical imaging has recently resulted in significant modifications to diagnosis. This article looks at the job of brain networks in clinical picture handling, featuring their ...
详细信息
The agricultural area has undergone a significant transformation owing to the progress made in IoT. It is imperative to have a dependable remote monitoring solution right now. This study aims to accomplish two goals. ...
详细信息
暂无评论