作者:
Gabr, MohamedKorayem, YousefChen, Yen-LinYee, Por LipKu, Chin SoonAlexan, Wassim
Faculty of Media Engineering and Technology Computer Science Department Cairo11835 Egypt National Taipei University of Technology
Department of Computer Science and Information Engineering Taipei106344 Taiwan Universiti Malaya
Faculty of Computer Science and Information Technology Department of Computer System and Technology Kuala Lumpur50603 Malaysia Universiti Tunku Abdul Rahman
Department of Computer Science Kampar31900 Malaysia
Faculty of Information Engineering and Technology Communications Department Cairo11835 Egypt
New Administrative Capital Mathematics Department Cairo13507 Egypt
This work proposes a novel image encryption algorithm that integrates unique image transformation techniques with the principles of chaotic and hyper-chaotic systems. By harnessing the unpredictable behavior of the Ch...
详细信息
This work analyzes the possibilities of the EfficientNetB3 architecture, reinforced by modern image data augmentation methods, in the classification of brain cancers from MRI scans. Our key objective was to greatly bo...
详细信息
Content personalization on social platforms has been linked to the creation of filter bubbles. The algorithms provide content recommendations based on the user’s browsing history and interests, which limits content d...
详细信息
The global prevalence of arm amputations, particularly transradial or below-elbow amputations, presents a pressing challenge due to the high costs of commercially available prosthetic hands. This issue is particularly...
详细信息
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic al...
详细信息
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image *** proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)*** algorithms are used to compute the accuracy of each method while the outputs are passed to fusion *** order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these *** proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical *** is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy.
There is a significant correlation between depression, verbal behavior, and facial expressions. By analyzing patients' audio and facial visuals, depression assessments can be conducted. However, existing work is p...
详细信息
Neural networks is one of the most developed concepts in artificial intelligence owing to their ability to solve complex computational tasks, and its efficiency in finding solutions. There is a wide range of applicati...
详细信息
Brain and central nervous system (CNS) cancers are the leading cause of cancer-related mortality, presenting significant diagnostic challenges due to their aggressive nature and diverse manifestations. While biopsies ...
详细信息
The concept of smart houses has grown in prominence in recent *** challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device **...
详细信息
The concept of smart houses has grown in prominence in recent *** challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device *** home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical *** paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in *** have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT *** system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing *** have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache *** feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time *** is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation ***,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber *** trial results support the proposed system and demonstrate its potential for use in everyday life.
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target *** are 2n potential feature subsets for every n features in a da...
详细信息
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target *** are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard ***,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been *** using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to *** of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization *** the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed *** to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance *** other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and *** results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection.
暂无评论