The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is p...
详细信息
The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is primarily influenced by two key factors: atmospheric attenuation and scattered light. Scattered light causes an image to be veiled in a whitish veil, while attenuation diminishes the image inherent contrast. Efforts to enhance image and video quality necessitate the development of dehazing techniques capable of mitigating the adverse impact of haze. This scholarly endeavor presents a comprehensive survey of recent advancements in the domain of dehazing techniques, encompassing both conventional methodologies and those founded on machine learning principles. Traditional dehazing techniques leverage a haze model to deduce a dehazed rendition of an image or frame. In contrast, learning-based techniques employ sophisticated mechanisms such as Convolutional Neural Networks (CNNs) and different deep Generative Adversarial Networks (GANs) to create models that can discern dehazed representations by learning intricate parameters like transmission maps, atmospheric light conditions, or their combined effects. Furthermore, some learning-based approaches facilitate the direct generation of dehazed outputs from hazy inputs by assimilating the non-linear mapping between the two. This review study delves into a comprehensive examination of datasets utilized within learning-based dehazing methodologies, elucidating their characteristics and relevance. Furthermore, a systematic exposition of the merits and demerits inherent in distinct dehazing techniques is presented. The discourse culminates in the synthesis of the primary quandaries and challenges confronted by prevailing dehazing techniques. The assessment of dehazed image and frame quality is facilitated through the application of rigorous evaluation metrics, a discussion of which is incorporated. To provide empiri
Feature selection helps eradicate redundant features which is essential to mitigate the curse of dimensionality when a machine-learning model deals with high-dimensional datasets. Grey Wolf Optimizer (GWO) is a swarm-...
详细信息
Today, humans seek opportunities to grow professionally and improve their mental health. As a result, anxiety and depression are now prominent to the point that people often accept them as part of their usual regular ...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Al...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Alzheimer's ***,most of the existing methods perform Alzheimer's disease diagnosis and mini-mental state examination score prediction separately and ignore the relation between these two *** address this challenging problem,we propose a novel multi-task learning method,which uses feature interaction to explore the relationship between Alzheimer's disease diagnosis and minimental state examination score *** our proposed method,features from each task branch are firstly decoupled into candidate and non-candidate parts for ***,we propose feature sharing module to obtain shared features from candidate features and return shared features to task branches,which can promote the learning of each *** validate the effectiveness of our proposed method on multiple *** Alzheimer's disease neuroimaging initiative 1 dataset,the accuracy in diagnosis task and the root mean squared error in prediction task of our proposed method is 87.86%and 2.5,*** results show that our proposed method outperforms most state-of-the-art *** proposed method enables accurate Alzheimer's disease diagnosis and mini-mental state examination score ***,it can be used as a reference for the clinical diagnosis of Alzheimer's disease,and can also help doctors and patients track disease progression in a timely manner.
In this paper, a brief overview of converter topologies used in stationary battery energy storage systems is given. A simulation model of converter was developed in MATLAB Simulink. A simulation is conducted to provid...
详细信息
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the...
详细信息
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the challenges of security risks and data analysis *** IIoT grows,cyber-attacks become more diverse and complex,making existing anomaly detection models less effective to *** this paper,an ensemble deep learning model that uses the benefits of the Long Short-Term Memory(LSTM)and the AutoEncoder(AE)architecture to identify out-of-norm activities for cyber threat hunting in IIoT is *** this model,the LSTM is applied to create a model on normal time series of data(past and present data)to learn normal data patterns and the important features of data are identified by AE to reduce data *** addition,the imbalanced nature of IIoT datasets has not been considered in most of the previous literature,affecting low accuracy and *** solve this problem,the proposed model extracts new balanced data from the imbalanced datasets,and these new balanced data are fed into the deep LSTM AE anomaly detection *** this paper,the proposed model is evaluated on two real IIoT datasets-Gas Pipeline(GP)and Secure Water Treatment(SWaT)that are imbalanced and consist of long-term and short-term dependency on *** results are compared with conventional machine learning classifiers,Random Forest(RF),Multi-Layer Perceptron(MLP),Decision Tree(DT),and Super Vector Machines(SVM),in which higher performance in terms of accuracy is obtained,99.3%and 99.7%based on GP and SWaT datasets,***,the proposed ensemble model is compared with advanced related models,including Stacked Auto-Encoders(SAE),Naive Bayes(NB),Projective Adaptive Resonance Theory(PART),Convolutional Auto-Encoder(C-AE),and Package Signatures(PS)based LSTM(PS-LSTM)model.
作者:
Pisal, TejasKumar, HemantKumar, PraveenGote, Pradanyawant
Faculty of Engineering & Technology Department of Computer Science & Design Wardha Maharashtra Sawangi442001 India
Faculty of Engineering & Technology Department of Basic Sciences and Humanities Wardha Maharashtra Sawangi442001 India
Faculty of Engineering & Technology Department of Computer Science & Medical Engineering Wardha Maharashtra Sawangi442001 India
Acute sinusitis, often occurring as a consequence of recovering from a cold, presents a significant health concern due to its impact on the interconnected hollow spaces located behind the cheekbones, forehead, and nos...
详细信息
In recent years, effective pest management has become of cross-application of artificial intelligence and big data technologies in agriculture and environment. Nowadays, plant pests have just become a serious problem,...
详细信息
— In recent years, time series prediction has become a highly interesting topic in various applied areas, including clinical time series analysis. Hospitals and other clinical healthcare systems collect Electronic He...
详细信息
Student success is a primary strategic goal for most higher education institutions. With budget cuts and rising operating costs, higher education institutions are focusing more on retaining student enrollment in their...
详细信息
暂无评论