咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 39 篇 会议
  • 2 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 48 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 19 篇 信息与通信工程
    • 10 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 7 篇 光学工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 动力工程及工程热...
    • 2 篇 测绘科学与技术
    • 2 篇 安全科学与工程
  • 60 篇 理学
    • 42 篇 数学
    • 12 篇 生物学
    • 9 篇 物理学
    • 6 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 地球物理学
  • 22 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 12 篇 医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 法学

主题

  • 4 篇 visualization
  • 4 篇 artificial intel...
  • 4 篇 training
  • 3 篇 electroencephalo...
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 transforms
  • 3 篇 web services
  • 3 篇 open source soft...
  • 2 篇 sensor systems
  • 2 篇 support vector m...
  • 2 篇 data privacy
  • 2 篇 hadoop
  • 2 篇 q-calculus
  • 2 篇 neural networks
  • 2 篇 optimization
  • 2 篇 noise
  • 2 篇 adversarial mach...
  • 2 篇 tensors
  • 2 篇 network architec...

机构

  • 7 篇 guangdong key la...
  • 6 篇 jagiellonian uni...
  • 6 篇 school of comput...
  • 5 篇 guangxi colleges...
  • 4 篇 school of comput...
  • 4 篇 data and signal ...
  • 4 篇 college of compu...
  • 4 篇 department of ma...
  • 4 篇 department of sc...
  • 3 篇 jagiellonian uni...
  • 3 篇 biomedical engin...
  • 3 篇 technische unive...
  • 3 篇 fujian provincia...
  • 3 篇 faculty of mathe...
  • 3 篇 department of qu...
  • 3 篇 college of appli...
  • 3 篇 department of ma...
  • 3 篇 institute of psy...
  • 3 篇 key laboratory o...
  • 3 篇 faculty of appli...

作者

  • 9 篇 zeng shengda
  • 7 篇 wu di
  • 7 篇 zhou yipeng
  • 6 篇 hu miao
  • 4 篇 wang shiping
  • 4 篇 solé-casals jord...
  • 4 篇 chen zhaoliang
  • 4 篇 xiaodong wu
  • 4 篇 plant claudia
  • 4 篇 guo wenzhong
  • 3 篇 grossmann daniel
  • 3 篇 yuzhu zeng
  • 3 篇 ching-wei wang
  • 3 篇 liu xin
  • 3 篇 sun zhe
  • 3 篇 migórski stanisl...
  • 3 篇 wu zhihao
  • 3 篇 winkert patrick
  • 3 篇 guo jianxiong
  • 3 篇 asif saara

语言

  • 106 篇 英文
  • 11 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Faculty of Computer Science and Data Processing"
119 条 记 录,以下是11-20 订阅
Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ
收藏 引用
computer Modeling in Engineering & sciences 2022年 第3期130卷 1479-1493页
作者: Qingbo Cai Resat Aslan Fujian Provincial Key Laboratory of Data-Intensive Computing Key Laboratory of Intelligent Computing and Information ProcessingSchool of Mathematics and Computer ScienceQuanzhou Normal UniversityQuanzhou362000China Department of Mathematics Faculty of Sciences and ArtsHarran UniversitySanlıurfa63300Turkey
The main purpose of this paper is to introduce some approximation properties of a Kantorovich kind q-Bernstein operators related to B′ezier basis functions with shape parameterλ∈[−1,1].Firstly,we compute some basic... 详细信息
来源: 评论
Analyzing the Convergence of Federated Learning with Biased Client Participation  9th
Analyzing the Convergence of Federated Learning with Bias...
收藏 引用
19th International Conference on Advanced data Mining and Applications, ADMA 2023
作者: Tan, Lei Hu, Miao Zhou, Yipeng Wu, Di School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China School of Computing Faculty of Science and Engineering Macquarie University SydneyNSW2109 Australia
Federated Learning (FL) is a promising decentralized machine learning framework that enables a massive number of clients (e.g., smartphones) to collaboratively train a global model over the Internet without sacrificin... 详细信息
来源: 评论
Brain-inspired artificial intelligence research: A review
收藏 引用
science China(Technological sciences) 2024年 第8期67卷 2282-2296页
作者: WANG GuoYin BAO HuaNan LIU Qun ZHOU TianGang WU Si HUANG TieJun YU ZhaoFei LU CeWu GONG YiHong ZHANG ZhaoXiang HE Sheng Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China Key Laboratory of Cyberspace Big Data Intelligent Security Chongqing University of Posts and TelecommunicationsChongqing 400065China College of Computer and Information Science Chongqing Normal UniversityChongqing 401331China State Key Laboratory of Brain and Cognitive Science Institute of BiophysicsChinese Academy of SciencesBeijing 100101China School of Psychological and Cognitive Sciences Peking UniversityBeijing 100871China State Key Laboratory of Multimedia Information Processing School of Computer SciencePeking UniversityBeijing 100871China Department of Computer Science School of ElectronicsInformation and Electrical EngineeringShanghai Jiao Tong UniversityShanghai 200240China Faculty of Electronic and Information Engineering Xi’an Jiaotong UniversityXi’an 710049China The Center for Research on Intelligent Perception and Computing Institute of AutomationChinese Academy of SciencesBeijing 100190China Institute of Biophysics Chinese Academy of SciencesBeijing 100101China
Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are d... 详细信息
来源: 评论
ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhaoliang Wu, Zhihao Sadikaj, Ylli Plant, Claudia Dai, Hong-Ning Wang, Shiping Cheung, Yiu-Ming Guo, Wenzhong College of Computer and Data Science Fuzhou University Fuzhou350116 China Department of Computer Science Hong Kong Baptist University Hong Kong Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Faculty of Computer Science and with the research network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
Although Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes via various message-passing mechanisms, the performance of GNNs is limited by po... 详细信息
来源: 评论
Efficient Convolutional Forward Modeling and Sparse Coding in Multichannel Imaging
Efficient Convolutional Forward Modeling and Sparse Coding i...
收藏 引用
European Signal processing Conference (EUSIPCO)
作者: Han Wang Yhonatan Kvich Eduardo Pérez Florian Römer Yonina C. Eldar Applied AI Signal Processing and Data Analysis Fraunhofer Institute for Nondestructive Testing Saarbrücken Germany Dept. Electronic Measurements and Signal Processing Technische Universität Ilmenau Ilmenau Germany Faculty of Math and Computer Science Weizmann Institute of Science Rehovot Israel
This study considers the Block-Toeplitz structural properties inherent in traditional multichannel forward model matrices, using Full Matrix Capture (FMC) in ultrasonic testing as a case study. We propose an analytica... 详细信息
来源: 评论
Efficient Convolutional Forward Modeling and Sparse Coding in Multichannel Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Han Kvich, Yhonatan Pérez, Eduardo Römer, Florian Eldar, Yonina C. Applied AI Signal Processing and Data Analysis Fraunhofer Institute for Nondestructive Testing Saarbrücken Germany Faculty of Math and Computer Science Weizmann Institute of Science Rehovot Israel Dept. Electronic Measurements and Signal Processing Technische Universität Ilmenau Ilmenau Germany
This study considers the Block-Toeplitz structural properties inherent in traditional multichannel forward model matrices, using Full Matrix Capture (FMC) in ultrasonic testing as a case study. We propose an analytica... 详细信息
来源: 评论
Supervised Anomaly Detection for Production Line Images using data Augmentation and Convolutional Neural Network
Supervised Anomaly Detection for Production Line Images usin...
收藏 引用
International Conference on Emerging Technologies and Factory Automation (ETFA)
作者: Saara Asif Muhammad Uzair Akmal Leonid Koval Simon Knollmeyer Selvine G. Mathias Daniel Grossmann AI Motion Technische Hochschule Ingolstadt Ingolstadt Germany AI Motion Bavaria Technische Hochschule Ingolstadt Ingolstadt Germany Faculty of Computer Science and Data Processing Technische Hochschule Ingolstadt Ingolstadt Germany
In the manufacturing industry, automated optical inspection aims to improve the detection and classification of anomalies by utilizing artificial intelligence and computer vision techniques to enhance quality control ... 详细信息
来源: 评论
Advancements in Content-Based Image Retrieval: A Comprehensive Survey of Relevance Feedback Techniques
arXiv
收藏 引用
arXiv 2023年
作者: Qazanfari, Hamed Alyan Nezhadi, Mohammad M. Khoshdaregi, Zohreh Nozari Image Processing and Data Mining Lab Shahrood University of Technology Shahrood Iran Faculty of Science University of Science and Technology of Mazandaran Behshahr Iran Department of Computer Engineering University of Bojnord Iran
Content-based image retrieval (CBIR) systems have emerged as crucial tools in the field of computer vision, allowing for image search based on visual content rather than relying solely on metadata. This survey paper p... 详细信息
来源: 评论
A Fast and Effective Multiple Kernel Clustering Method on Incomplete data
收藏 引用
computers, Materials & Continua 2021年 第4期67卷 267-284页
作者: Lingyun Xiang Guohan Zhao Qian Li Gwang-Jun Kim Osama Alfarraj Amr Tolba Changsha Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation School of Computer and Communication EngineeringChangsha University of Science and TechnologyChangsha410114China Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems Changsha University of Science and TechnologyChangsha410114China Faculty of Engineering and Information Technology Global Big Data Technologies CentreUniversity of Technology SydneyUltimoNSW2007Australia Department of Computer Engineering Chonnam National UniversityGwangju61186Korea Computer Science Department Community CollegeKing Saud UniversityRiyadh11437Saudi Arabia Department of Mathematics and Computer Science Faculty of ScienceMenoua UniversityShebin-El-kom32511Egyp
Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be ***,multiple kernel clustering for incomplete data is a crit... 详细信息
来源: 评论
AGNN: Alternating Graph-Regularized Neural Networks to Alleviate Over-Smoothing
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Zhaoliang Wu, Zhihao Lin, Zhenghong Wang, Shiping Plant, Claudia Guo, Wenzhong The College of Computer and Data Science Fuzhou University Fuzhou350116 China The Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China The Faculty of Computer Science Austria The research network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
Graph Convolutional Network (GCN) with the powerful capacity to explore graph-structural data has gained noticeable success in recent years. Nonetheless, most of the existing GCN-based models suffer from the notorious... 详细信息
来源: 评论