The two-volume set LNAI 6634 and 6635 constitutes the refereed proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2011, held in Shenzhen, China in May 2011. The total of 32 r...
详细信息
ISBN:
(数字)9783642208478
ISBN:
(纸本)9783642208461
The two-volume set LNAI 6634 and 6635 constitutes the refereed proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2011, held in Shenzhen, China in May 2011. The total of 32 revised full papers and 58 revised short papers were carefully reviewed and selected from 331 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, machine learning, artificial intelligence and pattern recognition, data warehousing and databases, statistics, knowledge engineering, behavior sciences, visualization, and emerging areas such as social network analysis.
Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and r...
详细信息
Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and relations, or dynamic KGs with temporal characteristics, faltering in their generalization to constantly evolving KGs with possible irregular entity drift. Thus, in this paper, we propose a novel link prediction model based on the embedding representation to handle the incompleteness of KGs with entity drift, termed as DCEL. Unlike traditional link prediction, DCEL could generate precise embeddings for drifted entity without imposing any regular temporal characteristic. The drifted entity is added into the KG with its links to the existing entity predicted in an incremental fashion with no requirement to retrain the whole KG for computational efficiency. In terms of DCEL model, it fully takes advantages of unstructured textual description, and is composed of four modules, namely MRC (Machine Reading Comprehension), RCAA (Relation Constraint Attentive Aggregator), RSA (Relation Specific Alignment) and RCEO (Relation Constraint Embedding Optimization). Specifically, the MRC module is first employed to extract short texts from long and redundant descriptions. Then, RCAA is used to aggregate the embeddings of textual description of drifted entity and the pre-trained word embeddings learned from corpus to a single text-based entity embedding while shielding the impact of noise and irrelevant information. After that, RSA is applied to align the text-based entity embedding to graph-based space to obtain the corresponding graph-based entity embedding, and then the learned embeddings are fed into the gate structure to be optimized based on the RCEO to improve the accuracy of representation learning. Finally, the graph-based model TransE is used to perform link prediction for drifted entity. Extensive experiments conducted on benchmark datasets in terms of evaluat
In the last years, research on Web mining has reached maturity and has broadened in scope. Two different but interrelated research threads have emerged, based on the dual nature of the Web: – The Web is a practically...
详细信息
ISBN:
(数字)9783540301233
ISBN:
(纸本)9783540232582
In the last years, research on Web mining has reached maturity and has broadened in scope. Two different but interrelated research threads have emerged, based on the dual nature of the Web: – The Web is a practically in?nite collection of documents: The acquisition and - ploitation of information from these documents asks for intelligent techniques for information categorization, extraction and search, as well as for adaptivity to the interests and background of the organization or person that looks for information. – The Web is a venue for doing business electronically: It is a venue for interaction, information acquisition and service exploitation used by public authorities, n- governmental organizations, communities of interest and private persons. When observed as a venue for the achievement of business goals, a Web presence should be aligned to the objectives of its owner and the requirements of its users. This raises the demand for understandingWeb usage, combining it with other sources of knowledge inside an organization, and deriving lines of action. ThebirthoftheSemanticWebatthebeginningofthedecadeledtoacoercionofthetwo threadsintwoaspects:(i)theextractionofsemanticsfromtheWebtobuildtheSemantic Web;and(ii)theexploitationofthesesemanticstobettersupportinformationacquisition and to enhance the interaction for business and non-business purposes. Semantic Web mining encompasses both aspects from the viewpoint of knowledge discovery.
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralque...
详细信息
ISBN:
(数字)9783540476986
ISBN:
(纸本)9783540476979
Finding knowledge – or meaning – in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di?ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e?ort. Nowhere may they be more pertinent, however, than in KD from Web data (“Web mining”). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies.
This book features a collection of high-quality, peer-reviewed papers presented at the Sixth International Conference on Intelligent Computing and Communication (ICICC 2022) organized by Department of computerscience...
详细信息
ISBN:
(数字)9789819915880
ISBN:
(纸本)9789819915873
This book features a collection of high-quality, peer-reviewed papers presented at the Sixth International Conference on Intelligent Computing and Communication (ICICC 2022) organized by Department of computerscience and Engineering, G. Narayanamma Institute of Technology and science (for women) Autonomous, Hyderabad, India, on November 18–19, 2022. It focuses on innovation paradigms in system knowledge, intelligence, and sustainability that can be applied to provide practical solutions to a number of problems in society, the environment, and industry. Further, the book also addresses the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in various disciplines of science, technology, and healthcare.
暂无评论