In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
In maritime Internet of Things (IoT) systems, leveraging a swarm of Unmanned Aerial Vehicles (UAVs) and optical communication can achieve a variety of potential maritime missions. However, due to the high directionali...
详细信息
Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards ...
详细信息
Nowadays, Android-based devices such as smart phones, tablets, smart watches, and virtual reality headsets have found increasing use in our daily lives. Along with the development of various applications for these dev...
详细信息
Demand forecasting has emerged as a crucial element in supply chain management. It is essential to identify anomalous data and continuously improve the forecasting model with new data. However, existing literature fai...
详细信息
Lung cancer is the most lethal form of cancer. This paper introduces a novel framework to discern and classify pulmonary disorders such as pneumonia, tuberculosis, and lung cancer by analyzing conventional X-ray and C...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning ...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning tools within the educational field has empowered disabled students to pursue higher education in any field of *** learning devices enable students to access institutional resources and facilities *** proposed assistive learning and communication tool allows hearing and speech-impaired students to interact productively with their teachers and *** tool converts the audio signals into sign language videos for the speech and hearing-impaired to follow and converts the sign language to text format for the teachers to *** educational tool for the speech and hearing-impaired is implemented by customized deep learning models such as Convolution neural networks(CNN),Residual neural Networks(ResNet),and stacked Long short-term memory(LSTM)network *** assistive learning tool is a novel framework that interprets the static and dynamic gesture actions in American Sign Language(ASL).Such communicative tools empower the speech and hearing impaired to communicate effectively in a classroom environment and foster *** deep learning models were developed and experimentally evaluated with the standard performance *** model exhibits an accuracy of 99.7% for all static gesture classification and 99% for specific vocabulary of gesture action *** two-way communicative and educational tool encourages social inclusion and a promising career for disabled students.
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past *** work has been put into its development in various aspects such as architectural atte...
详细信息
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past *** work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,*** research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest *** optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting *** address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective *** proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two *** search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing *** PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective *** fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing *** adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network *** proposed multi-objective PSO-fuzzy model is evaluated using NS-3 *** results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art *** proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended net
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
暂无评论