咨询与建议

限定检索结果

文献类型

  • 1,718 篇 期刊文献
  • 778 篇 会议
  • 24 册 图书

馆藏范围

  • 2,520 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,320 篇 工学
    • 756 篇 计算机科学与技术...
    • 618 篇 软件工程
    • 226 篇 信息与通信工程
    • 176 篇 生物工程
    • 160 篇 核科学与技术
    • 156 篇 生物医学工程(可授...
    • 152 篇 电气工程
    • 144 篇 控制科学与工程
    • 116 篇 光学工程
    • 107 篇 化学工程与技术
    • 99 篇 电子科学与技术(可...
    • 48 篇 机械工程
    • 46 篇 仪器科学与技术
    • 39 篇 安全科学与工程
    • 37 篇 网络空间安全
  • 1,226 篇 理学
    • 659 篇 物理学
    • 366 篇 数学
    • 248 篇 生物学
    • 144 篇 统计学(可授理学、...
    • 137 篇 化学
    • 63 篇 系统科学
  • 304 篇 管理学
    • 167 篇 管理科学与工程(可...
    • 139 篇 图书情报与档案管...
    • 94 篇 工商管理
  • 237 篇 医学
    • 195 篇 临床医学
    • 137 篇 基础医学(可授医学...
    • 76 篇 公共卫生与预防医...
    • 72 篇 药学(可授医学、理...
  • 70 篇 法学
    • 55 篇 社会学
  • 48 篇 农学
  • 38 篇 经济学
    • 38 篇 应用经济学
  • 30 篇 教育学
  • 5 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 155 篇 hadron colliders
  • 76 篇 hadrons
  • 62 篇 machine learning
  • 60 篇 accuracy
  • 59 篇 deep learning
  • 52 篇 semantics
  • 46 篇 hadronic decays
  • 44 篇 feature extracti...
  • 43 篇 artificial intel...
  • 41 篇 bottom mesons
  • 37 篇 branching fracti...
  • 36 篇 training
  • 34 篇 computational mo...
  • 33 篇 particle decays
  • 33 篇 data models
  • 31 篇 w & z bosons
  • 30 篇 federated learni...
  • 26 篇 leptonic, semile...
  • 26 篇 data mining
  • 26 篇 predictive model...

机构

  • 418 篇 department of ph...
  • 389 篇 iccub universita...
  • 373 篇 horia hulubei na...
  • 365 篇 h.h. wills physi...
  • 356 篇 university of ch...
  • 355 篇 van swinderen in...
  • 355 篇 cavendish labora...
  • 355 篇 school of physic...
  • 347 篇 department of ph...
  • 347 篇 imperial college...
  • 342 篇 center for high ...
  • 340 篇 stfc rutherford ...
  • 338 篇 institute of par...
  • 335 篇 yandex school of...
  • 326 篇 infn sezione di ...
  • 322 篇 henryk niewodnic...
  • 313 篇 infn sezione di ...
  • 313 篇 nikhef national ...
  • 301 篇 school of physic...
  • 301 篇 physik-institut ...

作者

  • 236 篇 beiter a.
  • 218 篇 barter w.
  • 214 篇 bellee v.
  • 200 篇 casse g.
  • 196 篇 bowcock t.j.v.
  • 194 篇 blake t.
  • 191 篇 borsato m.
  • 191 篇 betancourt c.
  • 191 篇 amato s.
  • 191 篇 boettcher t.
  • 190 篇 bediaga i.
  • 187 篇 braun s.
  • 186 篇 baryshnikov f.
  • 186 篇 borisyak m.
  • 184 篇 bizzeti a.
  • 181 篇 bencivenni g.
  • 179 篇 brundu d.
  • 177 篇 back j.j.
  • 177 篇 bay a.
  • 176 篇 bursche a.

语言

  • 2,180 篇 英文
  • 328 篇 其他
  • 22 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 西班牙文
检索条件"机构=Faculty of Computer Science and Research Network Data Science"
2520 条 记 录,以下是581-590 订阅
排序:
Self-feedback LSTM regression model for real-time particle source apportionment
收藏 引用
Journal of Environmental sciences 2022年 第4期34卷 10-20页
作者: Wei Wang Weiman Xu Shuai Deng Yimeng Chai Ruoyu Ma Guoliang Shi Bo Xu Mei Li Yue Li Trusted AI System Laboratory College of Computer ScienceNankai UniversityTianjin 300350China KLMDASR Tianjin Key Laboratory of Network and Data Security TechnologyTianjin 300350China State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control College of Environmental Science and EngineeringNankai UniversityTianjin 300071China Institute of Mass Spectrometry and Atmospheric Environment Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan UniversityGuangzhou 510632China Guangdong-Hongkong-Macao Joint Laboratory of Collaborative Innovation for Environmental Quality Guangzhou 510632China
Atmospheric particulate matter pollution has attracted much wider attention *** recent years,the development of atmospheric particle collection techniques has put forwards new demands on the real-time source apportion... 详细信息
来源: 评论
Touchstone benchmark: are we on the right way for evaluating AI algorithms for medical segmentation?  24
Touchstone benchmark: are we on the right way for evaluating...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Pedro R. A. S. Bassi Wenxuan Li Yucheng Tang Fabian Isensee Zifu Wang Jieneng Chen Yu-Cheng Chou Saikat Roy Yannick Kirchhoff Maximilian Rokuss Ziyan Huang Jin Ye Junjun He Tassilo Wald Constantin Ulrich Michael Baumgartner Klaus H. Maier-Hein Paul Jaeger Yiwen Ye Yutong Xie Jianpeng Zhang Ziyang Chen Yong Xia Zhaohu Xing Lei Zhu Yousef Sadegheih Afshin Bozorgpour Pratibha Kumari Reza Azad Dorit Merhof Pengcheng Shi Ting Ma Yuxin Du Fan Bai Tiejun Huang Bo Zhao Haonan Wang Xiaomeng Li Hanxue Gu Haoyu Dong Jichen Yang Maciej A. Mazurowski Saumya Gupta Linshan Wu Jiaxin Zhuang Hao Chen Holger Roth Daguang Xu Matthew B. Blaschko Sergio Decherchi Andrea Cavalli Alan L. Yuille Zongwei Zhou Department of Computer Science Johns Hopkins University and Department of Pharmacy and Biotechnology University of Bologna and Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Department of Computer Science Johns Hopkins University NVIDIA Division of Medical Image Computing German Cancer Research Center (DKFZ) and Helmholtz Imaging German Cancer Research Center (DKFZ) ESAT-PSI KU Leuven Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University Division of Medical Image Computing German Cancer Research Center (DKFZ) and Faculty of Mathematics and Computer Science Heidelberg University and HIDSS4Health - Helmholtz Information and Data Science School for Health Shanghai Jiao Tong University Shanghai Artificial Intelligence Laboratory Division of Medical Image Computing German Cancer Research Center (DKFZ) Division of Medical Image Computing German Cancer Research Center (DKFZ) and Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Helmholtz Imaging German Cancer Research Center (DKFZ) and Interactive Machine Learning Group (IML) DKFZ School of Computer Science and Engineering Northwestern Polytechnical University Australian Institute for Machine Learning The University of Adelaide College of Computer Science and Technology Zhejiang University Hong Kong University of Science and Technology (Guangzhou) Hong Kong University of Science and Technology (Guangzhou) and Hong Kong University of Science and Technology Faculty of Informatics and Data Science University of Regensburg Faculty of Electrical Engineering and Information Technology RWTH Aachen University Faculty of Informatics and Data Science University of Regensburg and Fraunhofer Institute for Digital Medicine MEVIS Electronic & Information Engineering School Harbin Institute of Technology (Shenzhen) Shanghai Jiao Tong University and Beijing Academy of Artificial Intelligence (BAAI) S
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and ...
来源: 评论
Investigating the Benefits of Adopting Secure Shell (SSH) in Wireless network Security
Investigating the Benefits of Adopting Secure Shell (SSH) in...
收藏 引用
2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario, ICPSITIAGS 2023
作者: Gavathri, C. Patil, Vivek D. Singh, Dhiraj Kumar Kumar, Ritesh Narmadha, T. Kalra, Hitesh Prince Shri Venkateshwara Padmavathy Engineering College Department of Science and Humanities Chennai127 India Vishwakarma Institute of Information Technology Department of Artificial Intelligence & Data Science Pune India Vivekananda Global University Department of Electrical Engineering Jaipur India Maharishi School of Engineering and Technology Maharishi University of Information Technology Uttar Pradesh India Faculty of Engineering and Technology Department of Computer Science Engineering Karnataka 562112 India Chitkara University Institute of Engineering and Technology Chitkara University Centre of Interdisciplinary Research in Business and Technology Punjab India
cozy Shell is an encrypted network protocol that has become increasingly popular in network security. Using SSH, organizations can defend their wireless networks from community penetration and malicious interest. SSH ... 详细信息
来源: 评论
Back to the Future: Challenges of Sparse and Irregular Medical Image Time Series
Back to the Future: Challenges of Sparse and Irregular M...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with Medical Images and data, LDTM 2024, 5th International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th International Conference on Medical Image Computing and computer Assisted Intervention, MICCAI 2024
作者: Disch, Nico Albert Peretzke, Robin Roy, Saikat Ulrich, Constantin Zimmerer, David Stiefelhagen, Rainer Kleesiek, Jens Maier-Hein, Klaus Division of Medical Image Computing German Cancer Research Center Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Faculty of Mathematics and Computer Science University of Heidelberg Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany Karlsruhe Institute of Technology Karlsruhe Germany University Hospital Essen Essen Germany University Hospital Essen West German Cancer Center Essen Essen Germany Medical Faculty Heidelberg University of Heidelberg Heidelberg Germany
In longitudinal medical image analysis, most work focuses on regularly sampled images, or on tasks like regression or classification. However, in the clinical context, images are frequently generated irregularly due t... 详细信息
来源: 评论
TransformerFusionNet: A Real-Time Multimodal Framework for ICU Heart Failure Mortality Prediction Using Big data Streaming
TransformerFusionNet: A Real-Time Multimodal Framework for I...
收藏 引用
2024 International Conference on computer and Applications, ICCA 2024
作者: Saleh, Hager McCann, Michael El-Sappagh, Shaker Breslin, John G. Hurghada University Faculty of Computers and Artificial Intelligence Hurghada Egypt University of Galway Insight Research Ireland Centre for Data Analytics GalwayH91 TK33 Ireland Atlantic Technological University Letterkenny Ireland Atlantic Technological University Department of Computing Letterkenny Ireland Galala University Faculty of Computer Science and Engineering Suez Egypt Benha University Faculty of Computers and Artificial Intelligence Benha Egypt School of Engineering University of Galway GalwayH91 TK33 Ireland
This paper presents a real-time multimodal frame-work to enhance ICU mortality prediction for heart disease patients by integrating structured data, clinical notes, and big data streaming platforms. The proposed frame... 详细信息
来源: 评论
Exploiting Deep Learning Architectures for Effective Real-Time data Analysis in Machine Learning  3
Exploiting Deep Learning Architectures for Effective Real-Ti...
收藏 引用
3rd International Conference on Smart Generation Computing, Communication and networking, SMART GENCON 2023
作者: Shreenidhi, H.S. Rajarajeswari, S. Bhagwat, Suvarna R. Sharma, Khushboo Seth, Kanika Yadav, Rakesh Kumar Faculty of Engineering and Technology Department of Computer Science Engineering Karnataka Ramnagar562112 India Prince Shri Venkateshwara Padmavathy Engineering College Department of Science and Humanities Chennai127 India Vishwakarma Institute of Information Technology Department of Artificial Intelligence & Data Science Pune India Vivekananda Global University Department of Electrical Engineering Jaipur India Chitkara University Institute of Engineering and Technology Chitkara University Centre of Interdisciplinary Research in Business and Technology Punjab India Maharishi School of Engineering and Technology Maharishi University of Information Technology Uttar Pradesh India
This paper seeks to discover how deep state-of-the-art architectures can be leveraged for robust actual-time information evaluation in device studying packages. The paper begins by supplying a comprehensive assessment... 详细信息
来源: 评论
Fil-Cad: A Fault Detection Method for Iiot Based on Federated Incremental Learning with Class Accuracy Distillation
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Yanhua Fang, Wenyu Huang, Wei Wang, Xiaofeng Zhao, Baokang Liu, Ximeng College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer National University of Defense Technology Changsha410073 China
Fault detection is a research topic attracting much attention in IIoT. However, the continuous accumulation and growth of IIoT data leads to the catastrophic forgetting problem in the fault detection model and data he... 详细信息
来源: 评论
FlexiFed: Personalized Federated Learning for Edge Clients with Heterogeneous Model Architectures  23
FlexiFed: Personalized Federated Learning for Edge Clients w...
收藏 引用
32nd ACM World Wide Web Conference, WWW 2023
作者: Wang, Kaibin He, Qiang Chen, Feifei Chen, Chunyang Huang, Faliang Jin, Hai Yang, Yun School of Computer Science and Technology Huazhong University of Science and Technology China Department of Computing Technologies Swinburne University of Technology Australia School of Information Technology Deakin University Australia Faculty of Information Technology Monash University Australia Guangxi Key Lab of Human-machine Interaction and Intelligent Decision Nanning Normal University China National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab Huazhong University of Science and Technology Wuhan430074 China
Mobile and Web-of-Things (WoT) devices at the network edge account for more than half of the world's web traffic, making a great data source for various machine learning (ML) applications, particularly federated l... 详细信息
来源: 评论
Multivariate Time-Series Deep Learning for Joint Prediction of Temperature and Relative Humidity in a Closed Space
收藏 引用
Procedia computer science 2023年 227卷 1046-1053页
作者: Fergianto E. Gunawan Arief S. Budiman Bens Pardamean Endang Juana Sugiarto Romeli Tjeng W. Cenggoro Kartika Purwandari Alam A. Hidayat Anak. A.N.P. Redi Muhammad Asrol Industrial Engineering Department BINUS Graduate Program – Master of Industrial Engineering Bina Nusantara University Jakarta 11480 Indonesia Computer Science Department BINUS Graduate Program – Master of Computer Science Program Bina Nusantara University Jakarta 11480 Indonesia Bioinformatics and Data Science Research Center Bina Nusantara University Jakarta 11480 Indonesia Electrical Engineering Department Faculty of Industrial Technology Universitas Trisakti Jakarta 11440 Indonesia PT Impack Pratama Industri Jakarta 14350 Indonesia Computer Science Department School of Computer Science Bina Nusantara University Jakarta 11480 Indonesia Mathematics Department School of Computer Science Bina Nusantara University Jakarta 11480 Indonesia
An accurate predictive model of temperature and humidity plays a vital role in many industrial processes that utilize a closed space such as in agriculture and building management. With the exceptional performance of ... 详细信息
来源: 评论
Towards A Hybrid Quantum Differential Privacy
arXiv
收藏 引用
arXiv 2025年
作者: Song, Baobao Pokhrel, Shiva Raj Vasilakos, Athanasios V. Zhu, Tianqing Li, Gang The Faculty of Engineering and IT University of Technology Sydney Sydney Australia The Centre for Cyber Security Research and Innovation Deakin University Geelong Australia The Department of Networks and Communications College of Computer Science and Information Technology Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia University of Agder Grimstad Norway The Faculty of Data Science City University of Macau China
Quantum computing offers unparalleled processing power but raises significant data privacy challenges. Quantum Differential Privacy (QDP) leverages inherent quantum noise to safeguard privacy, surpassing traditional D... 详细信息
来源: 评论