Abnormal event detection in video surveillance is critical for security, traffic management, and industrial monitoring applications. This paper introduces an innovative methodology for anomaly detection in video data,...
详细信息
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional meth...
详细信息
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional methodologies predominantly utilize centralized recommendations, relying on servers to store client data and dispatch advice to ***, these conventional approaches raise significant concerns regarding data privacy and often result in computational inefficiencies. E-health recommendation services, distinct from other recommendation domains, demand not only precise and swift analyses but also a stringent adherence to privacy safeguards, given the users' reluctance to disclose their identities or health information. In response to these challenges, we explore a new paradigm called on-device recommendation tailored to E-health diagnostics, where diagnostic support(such as biomedical image diagnostics), is computed at the client *** leverage the advances of federated learning to deploy deep learning models capable of delivering expert-level diagnostic suggestions on clients. However, existing federated learning frameworks often deploy a singular model across all edge devices, overlooking their heterogeneous computational capabilities. In this work, we propose an adaptive federated learning framework utilizing BlockNets, a modular design rooted in the layers of deep neural networks, for diagnostic recommendation across heterogeneous devices. Our framework offers the flexibility for users to adjust local model configurations according to their device's computational power. To further handle the capacity skewness of edge devices, we develop a data-free knowledge distillation mechanism to ensure synchronized parameters of local models with the global model, enhancing the overall accuracy. Through comprehensive experiments across five real-world datasets, against six baseline models, within six experimental setups, and various data distribution scenario
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and cr...
详细信息
ISBN:
(纸本)9798331509675
Smart agriculture systems leverage the possibilities offered by cutting-edge technologies such as IoT, AI, and remote sensing to revolutionize conventional farming by enhancing resource utilization, production, and crop damage mitigation. Real-time monitoring of soil and crop health, predictive analytics, pest control, and precision irrigation measures are all enabled by these systems. They are able to address major Indian agriculture issues, consequently boosting yield and profitability and promoting environmental sustainability. The largescale deployment of intelligent agriculture systems will change the agriculture landscape in India and will assure long-term food security for an ever-growing population. Challenges include adequate research and future studies in order to better install and achieve smart agricultural systems to protect crops. Intelligent agriculture involves all advanced research, including science and innovations, in national development through space technologies to enhance soil quality, conserve water, and facilitate agriculture information. Space ventures will undergo improved modernization through the introduction of crop sprayers, precision gene editors, epigenetics, big data analytics, IoT, wind and photovoltaic smart energy, AI-enabled robotic applications, and wide-scale desalination technologies. Implementing digital farming systems in developing economies will help their sectors as 85 percent of the global population is set to live in developing countries by 2030. Automation will prove to be necessary since food scarcity is on the rise along with resource wastage. Control strategies such as the IoT, aerial imagery, machine learning, and artificial intelligence will boost production and prevent soil degradation. These advanced technologies are also able to alleviate such issues as plant disease detection, pesticide management, and water application. The introduction of the Internet of Things in the agricultural research world has started
This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
Predicting and controlling crowd dynamics in emergencies is one of the main objectives of simulated emergency exercises. However, during emergency exercises, there is often a lack of sense of danger by the actors invo...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental *** propose a robust FLC with low computational complexity by reducing the number of membership functions and *** optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the *** evaluate the proposed FLC in various panel configurations under different environmental *** results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
As the trend to use the latestmachine learning models to automate requirements engineering processes continues,security requirements classification is tuning into the most researched field in the software engineering ...
详细信息
As the trend to use the latestmachine learning models to automate requirements engineering processes continues,security requirements classification is tuning into the most researched field in the software engineering *** literature studies have proposed numerousmodels for the classification of security ***,adopting those models is constrained due to the lack of essential datasets permitting the repetition and generalization of studies employing more advanced machine learning ***,most of the researchers focus only on the classification of requirements with security *** did not consider other nonfunctional requirements(NFR)directly or indirectly related to *** has been identified as a significant research gap in security requirements *** major objective of this study is to propose a security requirements classification model that categorizes security and other relevant security *** use PROMISE_exp and DOSSPRE,the two most commonly used datasets in the software engineering *** proposed methodology consists of two *** the first step,we analyze all the nonfunctional requirements and their relation with security *** found 10 NFRs that have a strong relationship with security *** the second step,we categorize those NFRs in the security requirements *** proposedmethodology is a hybridmodel based on the ConvolutionalNeural Network(CNN)and Extreme Gradient Boosting(XGBoost)***,we evaluate the model by updating the requirement type column with a binary classification column in the dataset to classify the requirements into security and non-security *** performance is evaluated using four metrics:recall,precision,accuracy,and F1 Score with 20 and 28 epochs number and batch size of 32 for PROMISE_exp and DOSSPRE datasets and achieved 87.3%and 85.3%accuracy,*** proposed study shows an enhancement in metrics
This paper addresses the challenge of commonmode voltage (CMV) generation in three-phase two-level back-to-back converters, which are a significant source of electromagnetic interference (EMI) in variable-speed drive ...
详细信息
This paper presents a adaptable multilevel inverter design utilizing the Packed E-Cell (PEC) configuration. This topology is well-suited for converting energy generated by photovoltaic systems to power AC loads and fo...
详细信息
Optical Character Recognition, or OCR, is a tool that could apprehend textual content in photographs or scanned documents and convert it into system-readable textual content. To recognize and extract information from ...
详细信息
暂无评论