The Integrated Sensing and Communication (ISAC) system merged with Reconfigurable Intelligent Surface (RIS) has recently received much attention. This paper proposes an intelligent metaheuristic version of Enhanced Ar...
详细信息
Stroke is a major type of brain disorder, and the MRI sequence known as diffusion-weighted imaging (DWI) is often used to evaluate early changes related to strokes. Typically, stroke diagnosis requires manual assessme...
详细信息
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors...
详细信息
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors,as well as confirming the absence of tumors,poses a significant challenge using MRI *** approaches predominantly rely on traditional machine learning and basic deep learning methods for image *** methods often rely on manual feature extraction and basic convolutional neural networks(CNNs).The limitations include inadequate accuracy,poor generalization of new data,and limited ability to manage the high variability in MRI *** the EfficientNetB3 architecture,this study presents a groundbreaking approach in the computational engineering domain,enhancing MRI-based brain tumor *** approach highlights a major advancement in employing sophisticated machine learning techniques within computer Science and engineering,showcasing a highly accurate framework with significant potential for healthcare *** model achieves an outstanding 99%accuracy,exhibiting balanced precision,recall,and F1-scores across all tumor types,as detailed in the classification *** successful implementation demonstrates the model’s potential as an essential tool for diagnosing and classifying brain tumors,marking a notable improvement over current *** integration of such advanced computational techniques in medical diagnostics can significantly enhance accuracy and efficiency,paving the way for wider *** research highlights the revolutionary impact of deep learning technologies in improving diagnostic processes and patient outcomes in neuro-oncology.
Monitoring sugar concentration during fermentation is crucial for producing high-quality alcoholic beverages. Traditional methods for measuring sugar concentration can be costly and time-consuming, especially for smal...
详细信息
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact ...
详细信息
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact the quality of fruits, leading to a decline in overall agricultural production. Mango leaf diseases pose significant threats to global mango production, necessitating accurate and efficient classification techniques for timely disease management. Our study focuses on introducing MangoLeafXNet, a customized Convolutional Neural Network (CNN) architecture specifically tailored for the classification of mango leaf diseases, along with a healthy class. Our proposed model comprises six layers optimized to capture intricate disease patterns, demonstrating superior performance compared with prevalent pre-trained models. The model is trained and evaluated on three publicly available datasets: MangoLeafBD (4000 images across 8 classes), MangoPest (16 pest classes including healthy leaves), and MLDID (3000 high-resolution images across 5 classes). Our model demonstrated exceptional classification performance, attaining 99.8% accuracy, 99.62% recall, 99.5% precision, and an F1-score of 99.56%. Further validation on the MangoPest dataset and the Mango Leaf Disease Identification Dataset (MLDID) resulted in accuracies of 96.31% and 96.33%, respectively, confirming the robustness and adaptability of MangoLeafXNet across different datasets. Additionally, we incorporate Explainable AI techniques, including GRAD-CAM, Saliency Map, and LIME to enhance the interpretability of our model. We deployed Gradio web interface to create an interactive interface that allows users to upload images of mango leaves and get real-time classification and validation results along with confidence scores. This contribution not only advances the state-of-the-art in mango leaf disease classification but also offers promising prospects for real-time disease diagnosis and precision agriculture
Introduction: Vehicle crashes can be hazardous to public safety and may cause infrastructure damage. Risky driving significantly raises the possibility of the occurrence of a vehicle crash. As per statistics by the Wo...
详细信息
Introduction: Vehicle crashes can be hazardous to public safety and may cause infrastructure damage. Risky driving significantly raises the possibility of the occurrence of a vehicle crash. As per statistics by the World Health Organization (WHO), approximately 1.35 million people are involved in road traffic crashes resulting in loss of life or physical disability. WHO attributes events like over-speeding, drunken driving, distracted driving, dilapidated road infrastructure and unsafe practices such as non-use of helmets and seatbelts to road traffic accidents. As these driving events negatively affect driving quality and enhance the risk of a vehicle crash, they are termed as negative driving attributes. Methods: A multi-level hierarchical fuzzy rules-based computational model has been designed to capture risky driving by a driver as a driving risk index. Data from the onboard telematics device and vehicle controller area network is used for capturing the required information in a naturalistic way during actual driving conditions. Fuzzy rules-based aggregation and inference mechanisms have been designed to alert about the possibility of a crash due to the onset of risky driving. Results: On-board telematics data of 3213 sub-trips of 19 drivers has been utilized to learn long term risky driving attributes. Furthermore, the current trip assessment of these drivers demonstrates the efficacy of the proposed model in correctly modeling the driving risk index of all of them, including 7 drivers who were involved in a crash after the monitored trip. Conclusion: In this work, risky driving behavior has been associated not just with rash driving but also other contextual data like driver’s long-term risk aptitude and environmental context such as type of roads, traffic volume and weather conditions. Trip-wise risky driving behavior of six out of seven drivers, who had met with a crash during that trip, was correctly predicted during evaluation. Similarly, for the other 12
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of rout...
详细信息
Wireless Sensor Networks (WSNs) are essential for collecting and transmitting data in modern applications that rely on data, where effective network connectivity and coverage are crucial. The optimal placement of router nodes within WSNs is a fundamental challenge that significantly impacts network performance and reliability. Researchers have explored various approaches using metaheuristic algorithms to address these challenges and optimize WSN performance. This paper introduces a new hybrid algorithm, CFL-PSO, based on combining an enhanced Fick’s Law algorithm with comprehensive learning and Particle Swarm Optimization (PSO). CFL-PSO exploits the strengths of these techniques to strike a balance between network connectivity and coverage, ultimately enhancing the overall performance of WSNs. We evaluate the performance of CFL-PSO by benchmarking it against nine established algorithms, including the conventional Fick’s law algorithm (FLA), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), Salp Swarm Optimization (SSO), War Strategy Optimization (WSO), Harris Hawk Optimization (HHO), African Vultures Optimization Algorithm (AVOA), Capuchin Search Algorithm (CapSA), Tunicate Swarm Algorithm (TSA), and PSO. The algorithm’s performance is extensively evaluated using 23 benchmark functions to assess its effectiveness in handling various optimization scenarios. Additionally, its performance on WSN router node placement is compared against the other methods, demonstrating its competitiveness in achieving optimal solutions. These analyses reveal that CFL-PSO outperforms the other algorithms in terms of network connectivity, client coverage, and convergence speed. To further validate CFL-PSO’s effectiveness, experimental studies were conducted using different numbers of clients, routers, deployment areas, and transmission ranges. The findings affirm the effectiveness of CFL-PSO as it consistently delivers favorable optimization results when compared to existing meth
Permanent magnet synchronous motors (PMSMs) are commonly used in various electrical drive applications due to their high efficiency and performance. However, these systems are susceptible to several types of faults. T...
详细信息
With the continuous expansion of the data center, its energy consumption is also increasing. Aiming at the problem that the high redundancy of modern data center network causes low energy-consumption utilization, this...
详细信息
This paper proposes a solution to enhance and compare different neural network (NN)-based side-slip angle estimators. The feed-forward neural networks (FFNNs), recurrent neural networks, long short-term memory units (...
详细信息
暂无评论