The Internet of Medical Things (IoMT) brings advanced patient monitoring and predictive analytics to healthcare but also raises cybersecurity and data privacy issues. This paper introduces a deep-learning model for Io...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
Rice fields all across the world are affected by spikelet sterility, often known as rice spikelet's disease. It is characterized by the improper development of spikelet’s, which lowers grain output and quality. F...
详细信息
Nowadays, high energy amount is being wasted by computing servers and personal electronic devices, which produce a high amount of carbon dioxide. Thus, it is required to decrease energy usage and pollution. Many appli...
详细信息
This research work focuses on food recognition, especially, the identification of the ingredients from food images. Here, the developed model includes two stages namely: 1) feature extraction;2) classification. Initia...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairne...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairness,and energy efficiency(EE).However,in conventional NOMA networks,performance degradation still exists because of the stochastic behavior of wireless *** combat this challenge,the concept of Intelligent Reflecting Surface(IRS)has risen to prominence as a low-cost intelligent solution for Beyond 5G(B5G)*** this paper,a modeling primer based on the integration of these two cutting-edge technologies,i.e.,IRS and NOMA,for B5G wireless networks is *** in-depth comparative analysis of IRS-assisted Power Domain(PD)-NOMA networks is provided through 3-fold ***,a primer is presented on the system architecture of IRS-enabled multiple-configuration PD-NOMA systems,and parallels are drawn with conventional network configurations,i.e.,conventional NOMA,Orthogonal Multiple Access(OMA),and IRS-assisted OMA *** by this,a comparative analysis of these network configurations is showcased in terms of significant performance metrics,namely,individual users'achievable rate,sum rate,ergodic rate,EE,and outage ***,for multi-antenna IRS-enabled NOMA networks,we exploit the active Beamforming(BF)technique by employing a greedy algorithm using a state-of-the-art branch-reduceand-bound(BRB)*** optimality of the BRB algorithm is presented by comparing it with benchmark BF techniques,i.e.,minimum-mean-square-error,zero-forcing-BF,and ***,we present an outlook on future envisioned NOMA networks,aided by IRSs,i.e.,with a variety of potential applications for 6G wireless *** work presents a generic performance assessment toolkit for wireless networks,focusing on IRS-assisted NOMA *** comparative analysis provides a solid foundation for the dev
Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
Aspect-based sentiment analysis(ABSA)is a fine-grained *** fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely ***,most existing work...
详细信息
Aspect-based sentiment analysis(ABSA)is a fine-grained *** fundamental subtasks are aspect termextraction(ATE)and aspect polarity classification(APC),and these subtasks are dependent and closely ***,most existing works on Arabic ABSA content separately address them,assume that aspect terms are preidentified,or use a pipeline *** solutions design different models for each task,and the output from the ATE model is used as the input to the APC model,which may result in error propagation among different steps because APC is affected by ATE *** methods are impractical for real-world scenarios where the ATE task is the base task for APC,and its result impacts the accuracy of ***,in this study,we focused on a multi-task learning model for Arabic ATE and APC in which the model is jointly trained on two subtasks simultaneously in a *** paper integrates themulti-task model,namely Local Cotext Foucse-Aspect Term Extraction and Polarity classification(LCF-ATEPC)and Arabic Bidirectional Encoder Representation from Transformers(AraBERT)as a shred layer for Arabic contextual text *** LCF-ATEPC model is based on a multi-head selfattention and local context focus mechanism(LCF)to capture the interactive information between an aspect and its ***,data augmentation techniques are proposed based on state-of-the-art augmentation techniques(word embedding substitution with constraints and contextual embedding(AraBERT))to increase the diversity of the training *** paper examined the effect of data augmentation on the multi-task model for Arabic *** experiments were conducted on the original and combined datasets(merging the original and augmented datasets).Experimental results demonstrate that the proposed Multi-task model outperformed existing APC *** results were obtained by AraBERT and LCF-ATEPC with fusion layer(AR-LCF-ATEPC-Fusion)and the proposed data augmentation
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
暂无评论