Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image *** paper presents the UltraSegNet architecture that addresses these...
详细信息
Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image *** paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing *** evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of *** the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of ***,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU ***,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of *** is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 *** improvement in small lesion detection is particularly crucial for early-stage breast cancer *** from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy.
Introduction: Vehicle crashes can be hazardous to public safety and may cause infrastructure damage. Risky driving significantly raises the possibility of the occurrence of a vehicle crash. As per statistics by the Wo...
详细信息
Introduction: Vehicle crashes can be hazardous to public safety and may cause infrastructure damage. Risky driving significantly raises the possibility of the occurrence of a vehicle crash. As per statistics by the World Health Organization (WHO), approximately 1.35 million people are involved in road traffic crashes resulting in loss of life or physical disability. WHO attributes events like over-speeding, drunken driving, distracted driving, dilapidated road infrastructure and unsafe practices such as non-use of helmets and seatbelts to road traffic accidents. As these driving events negatively affect driving quality and enhance the risk of a vehicle crash, they are termed as negative driving attributes. Methods: A multi-level hierarchical fuzzy rules-based computational model has been designed to capture risky driving by a driver as a driving risk index. Data from the onboard telematics device and vehicle controller area network is used for capturing the required information in a naturalistic way during actual driving conditions. Fuzzy rules-based aggregation and inference mechanisms have been designed to alert about the possibility of a crash due to the onset of risky driving. Results: On-board telematics data of 3213 sub-trips of 19 drivers has been utilized to learn long term risky driving attributes. Furthermore, the current trip assessment of these drivers demonstrates the efficacy of the proposed model in correctly modeling the driving risk index of all of them, including 7 drivers who were involved in a crash after the monitored trip. Conclusion: In this work, risky driving behavior has been associated not just with rash driving but also other contextual data like driver’s long-term risk aptitude and environmental context such as type of roads, traffic volume and weather conditions. Trip-wise risky driving behavior of six out of seven drivers, who had met with a crash during that trip, was correctly predicted during evaluation. Similarly, for the other 12
Inductive wireless power transfer (WPT) system uses alternating magnetic field to transmit power from the transmitter to the receiver. To confine the magnetic field, WPT coils are realized with high permeability subst...
详细信息
In today's modern world, efficient programming is a necessity. To speed up code generation nowadays, programming code is generated using different graphical tools. Although efficient, this technology is scarcely u...
详细信息
Lack of awareness and experience in CPR often discourages individuals from initiating rescue actions of Out-of-hospital cardiac arrest (OHCA). This research presents a new approach to CPR training using embedded syste...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
This paper presents measurements of the reflection and transmission coefficient of electromagnetic waves through concrete and two concrete-based composites: concrete with steel fibers and concrete with carbon fibers w...
详细信息
Multi-organ segmentation from abdominal images is an important task. Due to the imbalance between different organ and the differences in size, shape, and contrast of different organs, it is a challenging problem in th...
详细信息
This paper deals with the simulation calculation of transmission (S21) and reflection (S22) parameters in a material parametrically based on clay (brick). The electromagnetic parameters of the clay that are the subjec...
详细信息
Adopting the CloudIoT-based healthcare paradigm provides various prospects for medical IT and considerably enhances healthcare services. However, compared to the advanced development of CloudIoT-based healthcare syste...
详细信息
暂无评论