咨询与建议

限定检索结果

文献类型

  • 660 篇 期刊文献
  • 449 篇 会议
  • 13 册 图书

馆藏范围

  • 1,122 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 631 篇 工学
    • 464 篇 计算机科学与技术...
    • 382 篇 软件工程
    • 127 篇 信息与通信工程
    • 94 篇 电气工程
    • 92 篇 生物工程
    • 84 篇 生物医学工程(可授...
    • 72 篇 光学工程
    • 71 篇 控制科学与工程
    • 61 篇 电子科学与技术(可...
    • 48 篇 机械工程
    • 30 篇 网络空间安全
    • 27 篇 仪器科学与技术
    • 23 篇 化学工程与技术
    • 23 篇 交通运输工程
  • 455 篇 理学
    • 177 篇 物理学
    • 175 篇 数学
    • 123 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 34 篇 地球物理学
    • 32 篇 系统科学
    • 25 篇 化学
  • 182 篇 管理学
    • 112 篇 管理科学与工程(可...
    • 75 篇 图书情报与档案管...
    • 63 篇 工商管理
  • 113 篇 医学
    • 96 篇 临床医学
    • 80 篇 基础医学(可授医学...
    • 55 篇 公共卫生与预防医...
    • 34 篇 药学(可授医学、理...
  • 35 篇 法学
    • 30 篇 社会学
  • 32 篇 经济学
    • 32 篇 应用经济学
  • 18 篇 教育学
  • 16 篇 农学
  • 3 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 47 篇 accuracy
  • 43 篇 deep learning
  • 41 篇 machine learning
  • 33 篇 feature extracti...
  • 28 篇 computational mo...
  • 26 篇 semantics
  • 24 篇 convolutional ne...
  • 23 篇 training
  • 22 篇 artificial intel...
  • 20 篇 predictive model...
  • 20 篇 real-time system...
  • 19 篇 neural networks
  • 17 篇 federated learni...
  • 17 篇 data models
  • 16 篇 visualization
  • 15 篇 contrastive lear...
  • 14 篇 internet of thin...
  • 14 篇 optimization
  • 13 篇 data mining
  • 13 篇 security

机构

  • 60 篇 shandong provinc...
  • 49 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 20 篇 department of ph...
  • 20 篇 hiroshima astrop...
  • 19 篇 faculty of data ...
  • 19 篇 department of ph...
  • 17 篇 college of compu...
  • 15 篇 dipartimento di ...
  • 15 篇 shandong fundame...
  • 14 篇 dipartimento di ...
  • 14 篇 deutsches elektr...
  • 14 篇 w. w. hansen exp...
  • 14 篇 istituto naziona...
  • 14 篇 istituto naziona...
  • 14 篇 nasa goddard spa...
  • 13 篇 department of ph...
  • 13 篇 science institut...
  • 13 篇 max-planck-insti...
  • 13 篇 istituto naziona...

作者

  • 17 篇 niyato dusit
  • 15 篇 gargano f.
  • 14 篇 bastieri d.
  • 14 篇 sgrò c.
  • 14 篇 lubrano p.
  • 14 篇 spinelli p.
  • 14 篇 kuss m.
  • 14 篇 giroletti m.
  • 13 篇 ajello m.
  • 13 篇 green d.
  • 13 篇 orlando e.
  • 13 篇 nuss e.
  • 13 篇 torres d.f.
  • 12 篇 monzani m.e.
  • 12 篇 cameron r.a.
  • 12 篇 siskind e.j.
  • 12 篇 morselli a.
  • 12 篇 reimer o.
  • 12 篇 mizuno t.
  • 12 篇 piron f.

语言

  • 1,003 篇 英文
  • 113 篇 其他
  • 6 篇 中文
  • 2 篇 斯洛文尼亚文
检索条件"机构=Faculty of Data Science and Computing"
1122 条 记 录,以下是811-820 订阅
排序:
Stability Region Patterns in Dominant Pole Placement based PID Controller Design for SOPTD Systems
收藏 引用
Chemical Engineering science 2025年
作者: Kaushik Halder Saptarshi Das School of Computing & Electrical Engineering Indian Institute of Technology Mandi Mandi Himachal Pradesh Kamand 175005 India Faculty of Environment Science and Economy Centre for Environmental Mathematics University of Exeter Penryn Campus Cornwall TR10 9FE United Kingdom Institute for Data Science and Artificial Intelligence University of Exeter North Park Road Exeter Devon EX4 4QE United Kingdom
This paper proposes a new analytical formulation to design dominant pole placement based proportional-integral-derivative (PID) controllers for handling second order retarded type delay differential equations (DDEs) o... 详细信息
来源: 评论
Anomaly detection on attributed networks via contrastive self-supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yixin Li, Zhao Pan, Shirui Gong, Chen Zhou, Chuan Karypis, George The Department of Data Science and AI Faculty of Information Technology Monash University ClaytonVIC3800 Australia The Alibaba Group Hangzhou310000 China The PCA Laboratory Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The Department of Computing The Hong Kong Polytechnic University Hong Kong The Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100093 China The Department of Computer Science and Engineering University of Minnesota MinneapolisMN55455 United States
Anomaly detection on attributed networks attracts considerable research interests due to wide applications of attributed networks in modeling a wide range of complex systems. Recently, the deep learning-based anomaly ... 详细信息
来源: 评论
Retraction Note: Deep learning for predicting the onset of type 2 diabetes: enhanced ensemble classifier using modified t-SNE
收藏 引用
Multimedia Tools and Applications 2024年 第40期83卷 88553-88553页
作者: Pokharel, Monima Alsadoon, Abeer Nguyen, Tran Quoc Vinh Al-Dala’in, Thair Pham, Duong Thu Hang Prasad, P. W. C. Mai, Ha Thi School of Computing Mathematics and Engineering Charles Sturt University (CSU) Sydney Australia School of Computer Data and Mathematical Sciences Western Sydney University (WSU) Sydney Australia Kent Institute Australia Sydney Australia Asia Pacific International College (APIC) Sydney Australia The University of Da Nang – University of Science and Education Faculty of Information Technology Da Nang Vietnam
来源: 评论
A Parallel and Improved Quadrivalent Quantum-Inspired Gravitational Search Algorithm in Optimal Design of WSNs  2nd
A Parallel and Improved Quadrivalent Quantum-Inspired Gravit...
收藏 引用
2nd International Congress on High-Performance computing and Big data Analysis, TopHPC 2019
作者: Mirhosseini, Mina Fazlali, Mahmood Gaydadjiev, Georgi Department of Data and Computer Science Faculty of Mathematical Sciences GC Shahid Beheshti University Tehran Iran Department of Computing Imperial College London London United Kingdom Maxeler Technologies Ltd London United Kingdom
Wireless Sensor Networks (WSNs) are recently used in monitoring applications. One of the most important challenges in WSNs is determining the operational mode of sensors, decreasing the energy consumption while the co... 详细信息
来源: 评论
Design and analysis of a 2D discrete memristive map
收藏 引用
Physica Scripta 2025年 第7期100卷 075219-075219页
作者: Haiwei Sang Qiao Wang Yuling Chen Xiong Yu Feifei Wu Guizhou Key Laboratory of Artificial Intelligence and Brain-inspired Computing College of Mathematics and Big Data Guizhou Education University Guiyang 550018 People’s Republic of China School of artificial intelligence Guangzhou University 510006 People’s Republic of China State Key Laboratory of Public Big Data Guizhou University Guiyang 550025 People’s Republic of China Center for Artificial Intelligence Technology Faculty of Information Science and Technology Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia
This study proposes a novel 2D memristive hyperchaotic map (2DMHM) with hyperbolic tangent and absolute value functions. The 2DMHM exhibits an infinite of fixed points in a set of lines on the y-axis, with stability c...
来源: 评论
Better, Not Just More: data-Centric Machine Learning for Earth Observation
arXiv
收藏 引用
arXiv 2023年
作者: Roscher, Ribana Rußwurm, Marc Gevaert, Caroline Kampffmeyer, Michael dos Santos, Jefersson A. Vakalopoulou, Maria Hänsch, Ronny Hansen, Stine Nogueira, Keiller Prexl, Jonathan Tuia, Devis Data Science for Crop Systems Group Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße Jülich52428 Germany Remote Sensing Group University of Bonn Niebuhrstr. 1a Bonn53113 Germany Laboratory of Geo-information Science and Remote Sensing Wageningen University Droevendaalsesteeg 3 Wageningen Gelderland6708 PB Netherlands Department of Earth Observation Science Faculty ITC University of Twente Drienerlolaan 5 Enschede Overijssel7522 NB Netherlands Department of Physics and Technology UiT The Arctic University of Norway Klokkargårdsbakken 35 Tromsø9019 Norway Department of Computer Science University of Sheffield Sheffield City Centre 211 Portobello SheffieldS1 4DP United Kingdom Münchner Str. 20 Oberpfaffenhofen-Wessling82234 Germany Computing Science and Mathematics University of Stirling StirlingFK9 4LA United Kingdom Department of Aerospace Engineering University of the Bundeswehr Munich Werner-Heisenberg-Weg 39 Neubiberg Bavaria85579 Germany Ronquos 86 Sion1951 Switzerland
Recent developments and research in modern machine learning have led to substantial improvements in the geospatial field. Although numerous deep learning architectures and models have been proposed, the majority of th... 详细信息
来源: 评论
Assessing responsible innovation training
收藏 引用
Journal of Responsible Technology 2023年 16卷
作者: Stahl, Bernd Carsten Aicardi, Christine Brooks, Laurence Craigon, Peter J. Cunden, Mayen Burton, Saheli Datta Heaver, Martin De Saille, Stevienna De Dolby, Serena Dowthwaite, Liz Eke, Damian Hughes, Stephen Keene, Paul Kuh, Vivienne Portillo, Virginia Shanley, Danielle Smallman, Melanie Smith, Michael Stilgoe, Jack Ulnicane, Inga Wagner, Christian Webb, Helena School of Computer Science University of Nottingham United Kingdom Dept. of Informatics and School of Biomedical Engineering & Imaging Sciences King's College London United Kingdom Information School University of Sheffield Sheffield United Kingdom Horizon Digital Economy Research School of Computer Science University of Nottingham United Kingdom Independent Researcher Dept of Science and Technology Studies University College London United Kingdom ORBIT RRI limited Leicester United Kingdom Dept of Sociological Studies University of Sheffield Sheffield United Kingdom Centre for Computing and Social Responsibility De Montfort University Leicester United Kingdom School of Chemistry University of Bristol United Kingdom Department of Philosophy Faculty of Arts and Social Sciences Maastricht University Netherlands Biodiversity and Conservation Science Department of Biodiversity Conservation and Attractions Wildlife Research Centre Western Australia De Montfort University United Kingdom Lab for Uncertainty in Data and Decision Making (LUCID) School of Computer Science University of Nottingham United Kingdom
There is broad agreement that one important aspect of responsible innovation (RI) is to provide training on its principles and practices to current and future researchers and innovators, notably including doctoral stu... 详细信息
来源: 评论
Preface
Lecture Notes in Networks and Systems
收藏 引用
Lecture Notes in Networks and Systems 2023年 648 LNNS卷 v-vi页
作者: Abraham, Ajith Siarry, Patrick Hanne, Thomas Jesus, Isabel Zaki, Nazar Faculty of Computing and Data Science FLAME University Maharashtra Pune India Scientific Network for Innovation and Research Excellence Machine Intelligence Research Labs AuburnAL United States University of Applied Sciences and Arts Northwestern Switzerland Olten Switzerland Université Paris-Est Créteil Créteil France
来源: 评论
CFAD: Coarse-to-fine action detector for spatiotemporal action localization
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yuxi Lin, Weiyao See, John Xu, Ning Xu, Shugong Yan, Ke Yang, Cong Department of Electronic Engineering Shanghai Jiao Tong University China Institute for Advanced Communication and Data Science Shanghai University China Faculty of Computing and Informatics Multimedia University Malaysia Adobe Research United States Clobotics China
Most current pipelines for spatio-temporal action localization connect frame-wise or clip-wise detection results to generate action proposals, where only local information is exploited and the efficiency is hindered b... 详细信息
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: a review
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Sibo Bocquet, Marc Ding, Weiping Finn, Tobias Sebastian Fu, Rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, Dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, Rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China Centre for Health Informatics Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Department of Community Health Sciences Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1E 6BT United Kingdom Concordia Institute for Information Systems Engineering Concordia University MontrealQCH3G 1M8 Canada School of Mechanical Medical and Process Engineering Faculty of Engineering Queensland University of Technology BrisbaneQLD Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论