A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspon...
详细信息
A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138 fb−1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions.
For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidi...
详细信息
For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of sNN=8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the epos-lhc generator predictions are a factor of 2 below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the epos-lhc, qgsjet ii, and hijing predictions are all at least a factor of 5 lower than the data. The latter effect might be explained by a significant contribution of ultraperipheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.
A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–201...
详细信息
A search is presented for the Higgs boson decay to a pair of electrons ([Formula presented]) in proton-proton collisions at s=13TeV. The data set was collected with the CMS experiment at the LHC between 2016 and 2018,...
详细信息
Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typ...
详细信息
The first search is presented for vector-like leptons (VLLs) in the context of the “4321 model”, an ultraviolet-complete model with the potential to explain existing B physics measurements that are in tension with s...
详细信息
A data sample containing top quark pairs (tt¯) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an in...
详细信息
A data sample containing top quark pairs (tt¯) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an integrated luminosity of 138 fb−1 of proton-proton collisions produced at a center-of-mass energy of 13 TeV at the LHC and collected by the CMS experiment. Selected events contain a single lepton and hadronic jets, including two identified with the decay of bottom quarks, plus an additional large-radius jet with high transverse momentum identified as a Z or Higgs boson decaying to a bottom quark pair. Machine learning techniques are employed to discriminate between tt¯Z or tt¯H events and events from background processes, which are dominated by tt¯+jets production. No indications of new physics are observed. The signal strengths of boosted tt¯Z and tt¯H production are measured, and upper limits are placed on the tt¯Z and tt¯H differential cross sections as functions of the Z or Higgs boson transverse momentum. The effects of new physics are probed using a framework in which the standard model is considered to be the low-energy effective field theory of a higher energy scale theory. Eight possible dimension-six operators are added to the standard model Lagrangian, and their corresponding coefficients are constrained via fits to the data.
A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle ...
详细信息
A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest. The new technique is demonstrated for the reconstruction of the invariant mass of particles decaying in the CMS detector. The decay of a hypothetical scalar particle A into two photons, A→γγ, is chosen as a benchmark decay. Lorentz boosts γL=60–600 are considered, ranging from regimes where both photons are resolved to those where the photons are closely merged as one object. A training method using domain continuation is introduced, enabling the invariant mass reconstruction of unresolved photon pairs in a novel way. The new technique is validated using π0→γγ decays in LHC collision data.
A search for Kaluza-Klein excited vector boson resonances, WKK, decaying in cascade to three W bosons via a scalar radion R, WKK→WR→WWW, in a final state containing two or three massive jets is presented. The search...
详细信息
A search for Kaluza-Klein excited vector boson resonances, WKK, decaying in cascade to three W bosons via a scalar radion R, WKK→WR→WWW, in a final state containing two or three massive jets is presented. The search is performed with s=13 TeV proton-proton collision data collected by the CMS experiment at the CERN LHC during 2016–2018, corresponding to an integrated luminosity of 138 fb−1. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged into a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the WKK resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb−1 of proton-proton collisions delivered by the LHC at s=13 TeV and collected by the CMS detector...
详细信息
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb−1 of proton-proton collisions delivered by the LHC at s=13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at s=8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb−1, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.
暂无评论