Unmanned aerial vehicle technology is growing rapidly as it finds its application in the various industries, including military & defense, agriculture, logistics, transportation, healthcare, entertainment and many...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate *** this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in *** support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the *** the model complexity and the overall model *** fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA *** far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no ***,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA *** indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that *** the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model *** Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop...
详细信息
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this ***,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its ***,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation ***,it is used toward secure communication application *** it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)***,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...
详细信息
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to ***,it improves the array gain and directivity,increasing the detection range and angular resolution of radar *** study proposes two highly efficient SLL reduction *** techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,*** convolution process determines the element’s excitations while the GA optimizes the element *** M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,*** the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher *** the increased HPBWof the odd and even excitations,the element spacing is optimized using the ***,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the ***,for extreme SLL reduction,the DConv/GA is *** this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation *** provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
The deployment of distributed multi-controllers for Software-Defined Networking(SDN)architecture is an emerging solution to improve network scalability and ***,the network control failure affects the dynamic resource ...
详细信息
The deployment of distributed multi-controllers for Software-Defined Networking(SDN)architecture is an emerging solution to improve network scalability and ***,the network control failure affects the dynamic resource allocation in distributed networks resulting in network disruption and low ***,we consider the control plane fault tolerance for cost-effective and accurate controller location models during control plane *** fault-tolerance strategy has been applied to distributed SDN control architecture,which allows each switch to migrate to next controller to enhance network *** this paper,the Reliable and Dynamic Mapping-based controller Placement(RDMCP)problem in distributed architecture is framed as an optimization problem to improve the system reliability,quality,and *** considering the bound constraints,a heuristic state-of-the-art controller Placement Problem(CPP)algorithm is used to address the optimal assignment and reassignment of switches to nearby controllers other than their regular *** algorithm identifies the optimal controller location,minimum number of controllers,and the expected assignment costs after failure at the lowest effective cost.A metaheuristic Particle Swarm Optimization(PSO)algorithm was combined with RDMCP to form a hybrid approach that improves objective function optimization in terms of reliability and *** effectiveness of our hybrid RDMCP-PSO was then evaluated using extensive experiments and compared with other baseline *** findings demonstrate that the proposed hybrid technique significantly increases the network performance regarding the controller number and load balancing of the standalone heuristic CPP algorithm.
The potential uses of human occupancy detection (HOD) in vehicles are crucial for handling resources, passenger safety, and privacy-preserving technology. In this study, the usage of various sensor systems for non-inv...
详细信息
With the increasing penetration of photovoltaic (PV) systems posing challenges to power system stability, this paper investigates the effectiveness of grid-forming controlled PV systems in providing frequency ancillar...
详细信息
With increasing requirements for high quality, low bandwidth video transmission systems, comes a demand for more ad hoc video encoders. Unmanned Aerial Vehicles (UAVs), or just drones, have recently grown in popularit...
详细信息
暂无评论