With increasing requirements for high quality, low bandwidth video transmission systems, comes a demand for more ad hoc video encoders. Unmanned Aerial Vehicles (UAVs), or just drones, have recently grown in popularit...
详细信息
In this paper, a real-time smooth motion planning method for a four mecanum wheeled omnidirectional mobile robot in dynamic environments that generates a smooth collision-free trajectory is proposed. The method employ...
详细信息
The research presents a new efficient machine learning method to classify brain tumors because this task remains vital in fighting the high incidence of brain cancers. The proposed approach unites all its operations i...
详细信息
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the tran...
详细信息
In blockchain networks, transactions can be transmitted through channels. The existing transmission methods depend on their routing information. If a node randomly chooses a channel to transmit a transaction, the transmission may be aborted due to insufficient funds(also called balance) or a low transmission rate. To increase the success rate and reduce transmission delay across all transactions, this work proposes a transaction transmission model for blockchain channels based on non-cooperative game *** balance, channel states, and transmission probability are fully considered. This work then presents an optimized channel transaction transmission algorithm. First, channel balances are analyzed and suitable channels are selected if their balance is sufficient. Second, a Nash equilibrium point is found by using an iterative sub-gradient method and its related channels are then used to transmit transactions. The proposed method is compared with two state-of-the-art approaches: Silent Whispers and Speedy Murmurs. Experimental results show that the proposed method improves transmission success rate, reduces transmission delay,and effectively decreases transmission overhead in comparison with its two competitive peers.
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the...
详细信息
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)*** vast heterogeneous data increase the challenges of security risks and data analysis *** IIoT grows,cyber-attacks become more diverse and complex,making existing anomaly detection models less effective to *** this paper,an ensemble deep learning model that uses the benefits of the Long Short-Term Memory(LSTM)and the AutoEncoder(AE)architecture to identify out-of-norm activities for cyber threat hunting in IIoT is *** this model,the LSTM is applied to create a model on normal time series of data(past and present data)to learn normal data patterns and the important features of data are identified by AE to reduce data *** addition,the imbalanced nature of IIoT datasets has not been considered in most of the previous literature,affecting low accuracy and *** solve this problem,the proposed model extracts new balanced data from the imbalanced datasets,and these new balanced data are fed into the deep LSTM AE anomaly detection *** this paper,the proposed model is evaluated on two real IIoT datasets-Gas Pipeline(GP)and Secure Water Treatment(SWaT)that are imbalanced and consist of long-term and short-term dependency on *** results are compared with conventional machine learning classifiers,Random Forest(RF),Multi-Layer Perceptron(MLP),Decision Tree(DT),and Super Vector Machines(SVM),in which higher performance in terms of accuracy is obtained,99.3%and 99.7%based on GP and SWaT datasets,***,the proposed ensemble model is compared with advanced related models,including Stacked Auto-Encoders(SAE),Naive Bayes(NB),Projective Adaptive Resonance Theory(PART),Convolutional Auto-Encoder(C-AE),and Package Signatures(PS)based LSTM(PS-LSTM)model.
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the *** foremost and most prime sector among those affected were schools,colleges,and *** education system of entire nations had sh...
详细信息
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the *** foremost and most prime sector among those affected were schools,colleges,and *** education system of entire nations had shifted to online education during this *** shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of *** paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user *** AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based *** layer enhancements are also required,such as AI-based online proctoring and user authentication using *** extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of *** also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
In addition to its use in building and agriculture, global solar irradiance is one of the most critical aspects in designing and considering any solar station's volume. Because the Iraqi metrological organization ...
详细信息
Keeping track of time is regarded as an essential human behavior. The question of how the brain deals with temporal information remains a subject of scholarly debate. The current investigation aims to explore the mech...
详细信息
In the context of Intelligent Transportation Systems (ITS), the role of vehicle detection and classification is indispensable for streamlining transportation management, refining traffic control, and conducting in-dep...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacit...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacity time series ***,the representation learning of features such as long-distance sequence dependencies and mutations in capacity time series still needs to be *** address this challenge,this paper proposes a novel deep learning model,the MLP-Mixer and Mixture of Expert(MMMe)model,for RUL *** MMMe model leverages the Gated Recurrent Unit and Multi-Head Attention mechanism to encode the sequential data of battery capacity to capture the temporal features and a re-zero MLP-Mixer model to capture the high-level ***,we devise an ensemble predictor based on a Mixture-of-Experts(MoE)architecture to generate reliable RUL *** experimental results on public datasets demonstrate that our proposed model significantly outperforms other existing methods,providing more reliable and precise RUL predictions while also accurately tracking the capacity degradation *** code and dataset are available at the website of github.
暂无评论