Smartphones contain a vast amount of information about their users, which can be used as evidence in criminal cases. However, the sheer volume of data can make it challenging for forensic investigators to identify and...
详细信息
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber *** the myriad of potential attacks,D...
详细信息
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber *** the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of *** IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT *** this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS *** CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)*** proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in *** inv
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both th...
详细信息
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both the effective management and early detection of this disease. Feature selection (FS) methods are essential for identifying the most impactful features to improve breast cancer diagnosis. These methods reduce data dimensionality, eliminate irrelevant information, enhance learning accuracy, and improve the comprehensibility of results. However, the increasing complexity and dimensionality of cancer data pose substantial challenges to many existing FS methods, thereby reducing their efficiency and effectiveness. To overcome these challenges, numerous studies have demonstrated the success of nature-inspired optimization (NIO) algorithms across various domains. These algorithms excel in mimicking natural processes and efficiently solving complex optimization problems. Building on these advancements, we propose an innovative approach that combines powerful feature selection methods based on NIO techniques with a soft voting classifier. The NIO techniques employed include the Genetic Algorithm, Cuckoo Search, Salp Swarm, Jaya, Flower Pollination, Whale Optimization, Sine Cosine, Harris Hawks, and Grey Wolf Optimization algorithms. The Soft Voting Classifier integrates various machine learning models, including Support Vector Machines, Gaussian Naive Bayes, Logistic Regression, Decision Tree, and Gradient Boosting. These are used to improve the effectiveness and accuracy of breast cancer diagnosis. The proposed approach has been empirically evaluated using a variety of evaluation measures, such as F1 score, precision, recall, accuracy and Area Under the Curve (AUC), for performance comparison with individual machine learning techniques. The results demonstrate that the soft-voting ensemble technique, particularly when combined with feature selection based on the Jaya
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd datas
The use of lEC 61850 in electrical substation automation systems may have an impact on increasing the effectiveness and interoperability of smart grids. On the other hand, the development of connectivity will give ris...
详细信息
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may ...
详细信息
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the ***,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and *** study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss ***,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed *** results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and *** proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 *** prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
Fruit classification is an indispensable component of the modern world, with applications ranging from agriculture and food production to retail and distribution. Accurate classification of fruits ensures quality cont...
详细信息
ISBN:
(纸本)9798350385649
Fruit classification is an indispensable component of the modern world, with applications ranging from agriculture and food production to retail and distribution. Accurate classification of fruits ensures quality control and helps in streamlining supply chains. However, fruit classification is a complex endeavor, primarily due to the intrinsic diversity of fruits in terms of size, shape, color, and other characteristics. The challenge intensifies when the goal is not only to identify fresh fruits but also to detect and classify rotten or spoiled ones. The existing models and systems designed for fruit classification have been proficient in categorizing fresh, visually appealing fruits. These models have found widespread utility in industries such as agriculture and supermarkets, where the goal is to separate fruits that meet certain quality standards. However, they fall short when it comes to addressing the critical issue of identifying and classifying fruits that are no longer fit for consumption, which is equally important to prevent waste and maintain quality control. To bridge this gap, this project develops a comprehensive approach. It begins with the acquisition of a dataset that includes both fresh and rotten fruits. By combining the power of deep learning, specifically Convolutional Neural Networks (CNN), the project aims to classify fruits into distinct categories. The CNN model is trained to differentiate between fresh and rotten fruits by learning from a diverse set of images. In addition to classification, the project employs the capabilities of OpenCV, a popular computer vision library, to assess the ripeness of fruits based on the color. OpenCV provides a robust platform for analyzing color variations in fruit images. By leveraging this color analysis, the project can not only classify fruits but also determine their ripeness levels, providing a more holistic evaluation of fruit quality. The integration of CNN -based classification and OpenCV-driven ri
Image captioning is an emerging field in machine *** refers to the ability to automatically generate a syntactically and semantically meaningful sentence that describes the content of an *** captioning requires a comp...
详细信息
Image captioning is an emerging field in machine *** refers to the ability to automatically generate a syntactically and semantically meaningful sentence that describes the content of an *** captioning requires a complex machine learning process as it involves two sub models:a vision sub-model for extracting object features and a language sub-model that use the extracted features to generate meaningful ***-based vision transformers models have a great impact in vision field *** this paper,we studied the effect of using the vision transformers on the image captioning process by evaluating the use of four different vision transformer models for the vision sub-models of the image captioning The first vision transformers used is DINO(self-distillation with no labels).The second is PVT(Pyramid Vision Transformer)which is a vision transformer that is not using convolutional *** third is XCIT(cross-Covariance Image Transformer)which changes the operation in self-attention by focusing on feature dimension instead of token *** last one is SWIN(Shifted windows),it is a vision transformer which,unlike the other transformers,uses shifted-window in splitting the *** a deeper evaluation,the four mentioned vision transformers have been tested with their different versions and different configuration,we evaluate the use of DINO model with five different backbones,PVT with two versions:PVT_v1and PVT_v2,one model of XCIT,SWIN *** results show the high effectiveness of using SWIN-transformer within the proposed image captioning model with regard to the other models.
Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the *** di...
详细信息
Online Social Networks(OSNs)are based on the sharing of different types of information and on various interactions(comments,reactions,and sharing).One of these important actions is the emotional reaction to the *** diversity of reaction types available on Facebook(namely FB)enables users to express their feelings,and its traceability creates and enriches the users’emotional identity in the virtual *** paper is based on the analysis of 119875012 FB reactions(Like,Love,Haha,Wow,Sad,Angry,Thankful,and Pride)made at multiple levels(publications,comments,and sub-comments)to study and classify the users’emotional behavior,visualize the distribution of different types of reactions,and analyze the gender impact on emotion *** of these can be achieved by addressing these research questions:who reacts the most?Which emotion is the most expressed?
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructio...
详细信息
We study the behavior of deterministic methods for solving inverse problems in imaging. These methods are commonly designed to achieve two goals: (1) attaining high perceptual quality, and (2) generating reconstructions that are consistent with the measurements. We provide a rigorous proof that the better a predictor satisfies these two requirements, the larger its Lipschitz constant must be, regardless of the nature of the degradation involved. In particular, to approach perfect perceptual quality and perfect consistency, the Lipschitz constant of the model must grow to infinity. This implies that such methods are necessarily more susceptible to adversarial attacks. We demonstrate our theory on single image super-resolution algorithms, addressing both noisy and noiseless settings. We also show how this undesired behavior can be leveraged to explore the posterior distribution, thereby allowing the deterministic model to imitate stochastic methods. Copyright 2024 by the author(s)
暂无评论