Multiple antennas at transmitter and receiver have significantly improved the performance of wireless communications systems. Traditionally, space-time coding, beamforming, or spatial multiplexing are applied to achie...
详细信息
The rapid development of new emerging computing technologies has prompted many enterprises to outsource their data and computational needs. Such services must always adhere to safety standards that include privacy, ac...
详细信息
Temporal ontologies allow to represent not only concepts,their properties,and their relationships,but also time-varying information through explicit versioning of definitions or through the four-dimensional perduranti...
详细信息
Temporal ontologies allow to represent not only concepts,their properties,and their relationships,but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist *** are widely used to formally represent temporal data semantics in several applications belonging to different fields(e.g.,Semantic Web,expert systems,knowledge bases,big data,and artificial intelligence).They facilitate temporal knowledge representation and discovery,with the support of temporal data querying and ***,there is no standard or consensual temporal ontology query *** a previous work,we have proposed an approach namedτJOWL(temporal OWL 2 from temporal JSON,where OWL 2 stands for"OWL 2 Web Ontology Language"and JSON stands for"JavaScript Object Notation").τJOWL allows(1)to automatically build a temporal OWL 2 ontology of data,following the Closed World Assumption(CWA),from temporal JSON-based big data,and(2)to manage its incremental maintenance accommodating their evolution,in a temporal and multi-schema-version *** this paper,we propose a temporal ontology query language forτJOWL,namedτSQWRL(temporal SQWRL),designed as a temporal extension of the ontology query language—Semantic Query-enhanced Web Rule Language(SQWRL).The new language has been inspired by the features of the consensual temporal query language TSQL2(Temporal SQL2),well known in the temporal(relational)database *** aim of the proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any(complex)temporal query on time-varying ontologies generated from time-varying big *** examples,in the Internet of Healthcare Things(IoHT)domain,are provided to motivate and illustrate our proposal.
There is a significant correlation between depression, verbal behavior, and facial expressions. By analyzing patients' audio and facial visuals, depression assessments can be conducted. However, existing work is p...
详细信息
Chest x-ray studies can be automatically detected and their locations located using artificial intelligence (AI) in healthcare. To detect the location of findings, additional annotation in the form of bounding boxes i...
详细信息
The purpose of this article is to propose Stability-based Energy-Efficient Link-State Hybrid Routing(S-ELHR),a low latency routing proto-col that aims to provide a stable mechanism for routing in unmanned aerial vehic...
详细信息
The purpose of this article is to propose Stability-based Energy-Efficient Link-State Hybrid Routing(S-ELHR),a low latency routing proto-col that aims to provide a stable mechanism for routing in unmanned aerial vehicles(UAV).The S-ELHR protocol selects a number of network nodes to create a Connected Dominating Set(CDS)using a parameter known as the Stability Metric(SM).The SM considers the node’s energy usage,connectivity time,and node’s *** the highest SM nodes are chosen to form *** node declares a Willingness to indicate that it is prepared to serve as a relay for its neighbors,by employing its own energy state.S-ELHR is a hybrid protocol that stores only partial topological information and routing tables on CDS *** of relying on the routing information at each intermediary node,it uses source routing,in which a route is generated on-demand,and data packets contain the addresses of the nodes the packet will transit.A route recovery technique is additionally utilized,which first locates a new route to the destination before forwarding packets along *** simulation for various network sizes and mobility speeds,the efficiency of S-ELHR is *** findings demonstrate that S-ELHR performs better than Optimized Link State Routing(OLSR)and Energy Enhanced OLSR(EE-OLSR)in terms of packet delivery ratio,end-to-end delay,and energy consumption.
In a number of industries, including computer graphics, robotics, and medical imaging, three-dimensional reconstruction is essential. In this research, a CNN-based Multi-output and Multi-Task Regressor with deep learn...
详细信息
The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is p...
详细信息
The phenomenon of atmospheric haze arises due to the scattering of light by minute particles suspended in the atmosphere. This optical effect gives rise to visual degradation in images and videos. The degradation is primarily influenced by two key factors: atmospheric attenuation and scattered light. Scattered light causes an image to be veiled in a whitish veil, while attenuation diminishes the image inherent contrast. Efforts to enhance image and video quality necessitate the development of dehazing techniques capable of mitigating the adverse impact of haze. This scholarly endeavor presents a comprehensive survey of recent advancements in the domain of dehazing techniques, encompassing both conventional methodologies and those founded on machine learning principles. Traditional dehazing techniques leverage a haze model to deduce a dehazed rendition of an image or frame. In contrast, learning-based techniques employ sophisticated mechanisms such as Convolutional Neural Networks (CNNs) and different deep Generative Adversarial Networks (GANs) to create models that can discern dehazed representations by learning intricate parameters like transmission maps, atmospheric light conditions, or their combined effects. Furthermore, some learning-based approaches facilitate the direct generation of dehazed outputs from hazy inputs by assimilating the non-linear mapping between the two. This review study delves into a comprehensive examination of datasets utilized within learning-based dehazing methodologies, elucidating their characteristics and relevance. Furthermore, a systematic exposition of the merits and demerits inherent in distinct dehazing techniques is presented. The discourse culminates in the synthesis of the primary quandaries and challenges confronted by prevailing dehazing techniques. The assessment of dehazed image and frame quality is facilitated through the application of rigorous evaluation metrics, a discussion of which is incorporated. To provide empiri
The Integrated Sensing and Communication (ISAC) system merged with Reconfigurable Intelligent Surface (RIS) has recently received much attention. This paper proposes an intelligent metaheuristic version of Enhanced Ar...
详细信息
The integration of machine learning (ML) into mobile applications presents unique challenges, particularly in resource-constrained environments such as iOS devices. Skin lesion classification is a critical task in der...
详细信息
暂无评论