Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairne...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairness,and energy efficiency(EE).However,in conventional NOMA networks,performance degradation still exists because of the stochastic behavior of wireless *** combat this challenge,the concept of Intelligent Reflecting Surface(IRS)has risen to prominence as a low-cost intelligent solution for Beyond 5G(B5G)*** this paper,a modeling primer based on the integration of these two cutting-edge technologies,i.e.,IRS and NOMA,for B5G wireless networks is *** in-depth comparative analysis of IRS-assisted Power Domain(PD)-NOMA networks is provided through 3-fold ***,a primer is presented on the system architecture of IRS-enabled multiple-configuration PD-NOMA systems,and parallels are drawn with conventional network configurations,i.e.,conventional NOMA,Orthogonal Multiple Access(OMA),and IRS-assisted OMA *** by this,a comparative analysis of these network configurations is showcased in terms of significant performance metrics,namely,individual users'achievable rate,sum rate,ergodic rate,EE,and outage ***,for multi-antenna IRS-enabled NOMA networks,we exploit the active Beamforming(BF)technique by employing a greedy algorithm using a state-of-the-art branch-reduceand-bound(BRB)*** optimality of the BRB algorithm is presented by comparing it with benchmark BF techniques,i.e.,minimum-mean-square-error,zero-forcing-BF,and ***,we present an outlook on future envisioned NOMA networks,aided by IRSs,i.e.,with a variety of potential applications for 6G wireless *** work presents a generic performance assessment toolkit for wireless networks,focusing on IRS-assisted NOMA *** comparative analysis provides a solid foundation for the dev
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from ...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault *** biologically inspired strategies allow for effective solutions to intricate physical *** its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization *** utility and benefits have found traction in numerous academic *** its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference *** paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization *** trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
A new, to our knowledge, doped combination of Nd3+, Tm3+, and Ce3+ ions was developed in tellurite glass with a fundamental composition of TeO2-ZnO-WO3-Bi2O3, and the structural, thermal, and especially near-infrared ...
详细信息
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is *** the inversion of induced current,the unknown object along with the enclosed walls are treated as a...
详细信息
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is *** the inversion of induced current,the unknown object along with the enclosed walls are treated as a combination of ***,a non-iterative method called distorted-Born backpropagation(DB-BP)is utilized to generate the initial *** the training stage,several convolutional neural networks(CNNs)are cascaded to improve the estimated induced *** addition,a hybrid loss function consisting of the induced current error and the permittivity error is used to optimize the network ***,the relative permittivity images are conducted analytically using the predicted current based on *** the numerical and experimental TWI tests prove that,the proposed method can achieve better imaging accuracy compared to traditional distorted-Born iterative method(DBIM).
This study examines eyeblink synchronization in interactions characterized by mutual gaze without task-related or conversational elements that can trigger similarities in visual, auditory, or cognitive processing. We ...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of p...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of patientscan ensure remote healthcare at home using advanced technologies such as the Internet of Medical Things (IoMT).The IoMT can monitor and transmit sensitive health data;however, it may be vulnerable to various attacks. In thispaper, an efficient healthcare security system is proposed for IoMT applications. In the proposed system, themedical sensors can transmit sensed encrypted health data via a mobile application to the doctor for ***, three consortium blockchains are constructed for load balancing of transactions and reducing transactionlatency. They store the credentials of system entities, doctors' prescriptions and recommendations according to thedata transmitted via mobile applications, and the medical treatment process. Besides, cancelable biometrics areused for providing authentication and increasing the security of the proposed medical system. The investigationalresults show that the proposed system outperforms existing work where the proposed model consumed lessprocessing time by values of 18%, 22%, and 40%, and less energy for processing a 200 KB file by values of 9%,13%, and 17%. Finally, the proposed model consumed less memory usage by values of 7%, 7%, and 18.75%. Fromthese results, it is clear that the proposed system gives a very reliable and secure performance for efficientlysecuring medical applications.
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Wireless Sensor Networks (WSNs) play an important role in the modern era and security has become an important research area. Intrusion Detection System (IDS) improve network security by monitoring the network state so...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
暂无评论