A key goal of clustering is data reduction. In center-based clustering of complex objects therefore not only the number of clusters but also the complexity of the centers plays a crucial role. We propose LBudget Clust...
详细信息
Poverty is considered a serious global issue that must be immediately eradicated by Sustainable Development Goals (SDGs) 1, namely ending poverty anywhere and in any form. As a developing country, poverty is a complex...
详细信息
The faculty of computerscience, Universitas Brawijaya (Filkom UB) is committed to providing quality services for the users especially internal and external stakeholders, one of which is through the HaloFilkom service...
详细信息
ISBN:
(纸本)9798350379914
The faculty of computerscience, Universitas Brawijaya (Filkom UB) is committed to providing quality services for the users especially internal and external stakeholders, one of which is through the HaloFilkom service. HaloFilkom services have limitations in terms of time. HaloFilkom services are not available 24 hours due to limited working hours. Questions asked by users are not answered directly. This weakness in the HaloFilkom system can be overcome by using a chatbot system. Chatbot is an interactive system that works with natural human language and can work 24 hours. Thus, the current study explores the basic chatbot model by classifying the Q&A in the closed domain knowledge. The dataset in this research is in the form of pairs of questions and answers regarding various topics at the Filkom UB. The knowledge is preprocessed using text preprocessing which includes case folding, tokenization, padding, and tensorization. One of the chatbot models is a generative model. Creating a generative chatbot model can be done using the Seq2Seq model mechanism which consists of an encoder and decoder. The model created consists of four different architectures, namely a model with an LSTM encoder without attention and with attention and a BiLSTM model encoder without attention and with attention. Hyperparameter tuning was conducted to obtain the best hyperparameter combination. The experiment results show the best hyperparameter combination obtained is hidden size 448, drop out rate 0.5, learning rate 0.001, batch size 64, and teacher force 0. The model with the best loss is obtained with a BiLSTM encoder architecture without an attention mechanism with a train loss of 0.120. The model with the highest BLEU Score was obtained by a model with a BiLSTM encoder architecture without an attention mechanism with a BLEU Score of 0.8587 on the training data. Testing using prompt testing obtained an average BLEU Score of 0.3745 on the BiLSTM encoder without an attention mechanism mo
This tertiary systematic literature review examines 29 systematic literature reviews and surveys in Explainable Artificial Intelligence (XAI) to uncover trends, limitations, and future directions. The study explores c...
详细信息
In the current landscape of intelligent transportation, vehicle platooning has become a key strategy for improving traffic efficiency and safety. However, as multiple platoons move at high speeds, the platoon encounte...
详细信息
Dengue shock syndrome (DSS) is an infectious disease that affects millions of people every year all over the world. Early detection of DSS is essential for providing effective therapy and promoting patient recovery. I...
详细信息
Kindergarten education has a very important role in shaping the foundation of child development. For parents, see reports on the achievement of children's development at school through the results of each semester...
详细信息
An intelligent robotic vehicle with an ultrasonic sensor that can avoid obstacles in its path is the research idea. This sensor recognizes obstructions, permitting the vehicle to perform activities like halting, turni...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Al...
详细信息
Accurately diagnosing Alzheimer's disease is essential for improving elderly ***,accurate prediction of the mini-mental state examination score also can measure cognition impairment and track the progression of Alzheimer's ***,most of the existing methods perform Alzheimer's disease diagnosis and mini-mental state examination score prediction separately and ignore the relation between these two *** address this challenging problem,we propose a novel multi-task learning method,which uses feature interaction to explore the relationship between Alzheimer's disease diagnosis and minimental state examination score *** our proposed method,features from each task branch are firstly decoupled into candidate and non-candidate parts for ***,we propose feature sharing module to obtain shared features from candidate features and return shared features to task branches,which can promote the learning of each *** validate the effectiveness of our proposed method on multiple *** Alzheimer's disease neuroimaging initiative 1 dataset,the accuracy in diagnosis task and the root mean squared error in prediction task of our proposed method is 87.86%and 2.5,*** results show that our proposed method outperforms most state-of-the-art *** proposed method enables accurate Alzheimer's disease diagnosis and mini-mental state examination score ***,it can be used as a reference for the clinical diagnosis of Alzheimer's disease,and can also help doctors and patients track disease progression in a timely manner.
Immeasurable efforts have been put into strengthening energy security and reducing greenhouse gas emissions by meeting growing energy demand. With declining costs and increasing performance, the deployment of PV syste...
详细信息
暂无评论