作者:
Pisal, TejasKumar, HemantKumar, PraveenGote, Pradanyawant
Faculty of Engineering & Technology Department of Computer Science & Design Wardha Maharashtra Sawangi442001 India
Faculty of Engineering & Technology Department of Basic Sciences and Humanities Wardha Maharashtra Sawangi442001 India
Faculty of Engineering & Technology Department of Computer Science & Medical Engineering Wardha Maharashtra Sawangi442001 India
Acute sinusitis, often occurring as a consequence of recovering from a cold, presents a significant health concern due to its impact on the interconnected hollow spaces located behind the cheekbones, forehead, and nos...
详细信息
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and atte...
详细信息
Particles in the atmosphere, such as dust and smoke, can cause visual clarity problems in both images and videos. Haze is the result of the interaction between airborne particles and light, which is scattered and attenuated. Hazy media present difficulties in a variety of applications due to the reduced contrast and loss of essential information. In response, dehazing techniques have been introduced to bring hazy videos and images back to clarity. Here, we provide a novel technique for eliminating haze. It comprises preprocessing steps before dehazing. Preprocessing is applied to hazy images through homomorphic processing and Contrast Limited Adaptive Histogram Equalization (CLAHE). We present a dehazing technique referred to as the pre-trained Feature Fusion Attention Network (FFA-Net) that directly lets dehazed images be restored from hazy or preprocessed hazy inputs without requiring the determination of atmospheric factors, such as air light and transmission maps. The FFA-Net architecture incorporates a Feature Attention (FA) method to do this task. We assess the proposed technique in a variety of circumstances, including visible frames, Near-Infrared (NIR) frames, and real-world hazy images. Evaluation criteria like entropy, correlation, and Peak Signal-to-Noise Ratio (PSNR) are used to compare the quality of dehazed frames or images to their hazy counterparts. Furthermore, histogram analysis and spectral entropy are adopted to determine the effectiveness of the proposed technique in comparison to existing dehazing techniques. Comparative results are presented for both real-world and simulated environments. The benefits of the proposed technique are demonstrated by a comparison of the results obtained from the standalone pre-trained FFA-Net and the proposed comprehensive methodology. Moreover, a thorough assessment is carried out for comparing the effectiveness of the proposed FFA-Net technique to those of some current dehazing techniques on real hazy images. T
In past decades, scientific research has explored various bat detection systems methods, a common trend to identify heterogeneous species of bats. In this article, we represented an ultrasonic bat detection and protec...
详细信息
This paper mainly discusses two kinds of coupled reaction-diffusion neural networks (CRNN) under topology attacks, that is, the cases with multistate couplings and with multiple spatial-diffusion couplings. On one han...
详细信息
For precise illness diagnosis and therapy planning, medical imaging diagnostics are necessary. Nevertheless, diagnostic errors can occur due to noise and aberrations that are inherent to imaging modalities including C...
详细信息
To solve the problems of vote forgery and malicious election of candidate nodes in the Raft consensus algorithm, we combine zero trust with the Raft consensus algorithm and propose a secure and efficient consensus alg...
详细信息
A multiresolution chain coding scheme for contours based on Freeman chain codes in four direction is proposed. It progressively refines the grid size and encodes by the proposed R11 chain codes. Encoding and decoding ...
详细信息
The Indonesian republic police have provided services to the community by facilitating reporting via WhatsApp. However, messages sent through WhatsApp require manual identification to determine the type of offense rep...
详细信息
This paper examines the escalating ransomware threats faced by government-managed educational institutions, focusing on their vulnerabilities, case studies, and mitigation strategies. With the adoption of Bring Your O...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and ...
详细信息
Emotion Recognition in Conversations(ERC)is fundamental in creating emotionally ***-BasedNetwork(GBN)models have gained popularity in detecting conversational contexts for ERC ***,their limited ability to collect and acquire contextual information hinders their *** propose a Text Augmentation-based computational model for recognizing emotions using transformers(TA-MERT)to address *** proposed model uses the Multimodal Emotion Lines Dataset(MELD),which ensures a balanced representation for recognizing human *** used text augmentation techniques to producemore training data,improving the proposed model’s *** encoders train the deep neural network(DNN)model,especially Bidirectional Encoder(BE)representations that capture both forward and backward contextual *** integration improves the accuracy and robustness of the proposed ***,we present a method for balancing the training dataset by creating enhanced samples from the original *** balancing the dataset across all emotion categories,we can lessen the adverse effects of data imbalance on the accuracy of the proposed *** results on the MELD dataset show that TA-MERT outperforms earlier methods,achieving a weighted F1 score of 62.60%and an accuracy of 64.36%.Overall,the proposed TA-MERT model solves the GBN models’weaknesses in obtaining contextual data for ***-MERT model recognizes human emotions more accurately by employing text augmentation and transformer-based *** balanced dataset and the additional training samples also enhance its *** findings highlight the significance of transformer-based approaches for special emotion recognition in conversations.
暂无评论