Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
Wildfires are one of the most destructive natural disasters that cause significant harm to both humans and the environment. Predicting their spread is critical for disaster management and preparedness. In this study, ...
详细信息
Soldering irons are a hand tool that is indispensable in the process of making small series of electronic devices. Soldering irons have evolved from very simple devices without temperature control to devices with comp...
详细信息
The quality of development documents written in natural language is basically ensured by developer’s review with quite a few man-hours. Natural language processing (NLP) tools can partially automate the time-consumin...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual ex...
详细信息
Crop diseases have a significant impact on plant growth and can lead to reduced *** methods of disease detection rely on the expertise of plant protection experts,which can be subjective and dependent on individual experience and *** address this,the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease *** this paper,we propose a novel approach that utilizes a convolutional neural network(CNN)model in conjunction with Inception v3 to identify plant leaf *** research focuses on developing a mobile application that leverages this mechanism to identify diseases in plants and provide recommendations for overcoming specific *** models were trained using a dataset consisting of 80,848 images representing 21 different plant leaves categorized into 60 distinct *** rigorous training and evaluation,the proposed system achieved an impressive accuracy rate of 99%.This mobile application serves as a convenient and valuable advisory tool,providing early detection and guidance in real agricultural *** significance of this research lies in its potential to revolutionize plant disease detection and management *** automating the identification process through deep learning algorithms,the proposed system eliminates the subjective nature of expert-based diagnosis and reduces dependence on individual *** integration of mobile technology further enhances accessibility and enables farmers and agricultural practitioners to swiftly and accurately identify diseases in their crops.
Graph neural networks (GNN), primed to extract knowledge and discover patterns in graph-structured data, have received particularly increased attention in biomedical research. By integrating information from a variety...
详细信息
作者:
Gabr, MohamedKorayem, YousefChen, Yen-LinYee, Por LipKu, Chin SoonAlexan, Wassim
Faculty of Media Engineering and Technology Computer Science Department Cairo11835 Egypt National Taipei University of Technology
Department of Computer Science and Information Engineering Taipei106344 Taiwan Universiti Malaya
Faculty of Computer Science and Information Technology Department of Computer System and Technology Kuala Lumpur50603 Malaysia Universiti Tunku Abdul Rahman
Department of Computer Science Kampar31900 Malaysia
Faculty of Information Engineering and Technology Communications Department Cairo11835 Egypt
New Administrative Capital Mathematics Department Cairo13507 Egypt
This work proposes a novel image encryption algorithm that integrates unique image transformation techniques with the principles of chaotic and hyper-chaotic systems. By harnessing the unpredictable behavior of the Ch...
详细信息
Optical flow is the perceived movement of a pixel within the video. It is inherently helpful for motion tracking and may also be used as a preprocessing for other computer vision algorithms or machine learning. Algori...
详细信息
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL me...
详细信息
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL methods often require substantial computational resources,hindering their application on resource-constrained *** propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome *** Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for *** proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet *** specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato *** model could be used on mobile platforms because it is lightweight and designed with fewer *** farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia ***-quality images require well-tuned communication *** Single C...
详细信息
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia ***-quality images require well-tuned communication *** Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and *** data need a space away fromunauthorized access,modification,or *** requirements are to be fulfilled by digital image watermarking and *** paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication *** introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver *** proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD *** addition,image encryption is implemented based on chaos and DNA *** encrypted watermarked images are then transmitted through the wireless SC-FDMA *** linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted *** subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this *** study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked *** addition,different variants of SC-FDMA bas
暂无评论