App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
Significant progress has been made in remote sensing image change detection due to the rapid development of Deep Learning techniques. Convolutional neural networks(CNNs) have become foundational models in this field. ...
详细信息
Significant progress has been made in remote sensing image change detection due to the rapid development of Deep Learning techniques. Convolutional neural networks(CNNs) have become foundational models in this field. Previous works on remote sensing image change detection has utilized domain adaptation methods, achieving promising predictive performance. However, the transferable knowledge between source and target domain has not been fully exploited. In this paper, we propose a novel cross-domain contrastive learning approach for remote sensing image change detection, which correlates source and target domain using contrastive principles. Specifically, we introduce a transferable cross-domain Dictionary Learning scheme where a shared dictionary between the source and target domains generates sparse representations. Based on these representations, we compute attention weights and propose an attention-weighted contrastive loss to enhance knowledge transfer between source and target domains. Experiments demonstrate the effectiveness of the proposed methods on public remote sensing image change detection datasets.
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
The advancement of automated number plate recognition (ANPR) systems has garnered noteworthy attention in recent times owing to their diverse applications across multiple domains, including traffic management, parking...
详细信息
Portable document formats (PDFs) are widely used for document exchange due to their widespread usage and versatility. However, PDFs are highly vulnerable to malware attacks, which pose significant security risks. Exis...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
作者:
Raut, YashasviChaudhri, Shiv Nath
Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra India
Faculty of Engineering and Technology Department of Computer Science and Design Maharashtra India
Gas and biosensors are crucial in the modern healthcare system, enabling non-invasive monitoring and diagnosis of various medical conditions. These sensors are used in various applications, including smart home health...
详细信息
Purpose - This project work shows a literature survey, clearly defines the mass growth factor, shows a mass growth iteration, and derives an equation for a direct calculation of the factor (without iteration). Definit...
详细信息
ISBN:
(纸本)9781713898436
Purpose - This project work shows a literature survey, clearly defines the mass growth factor, shows a mass growth iteration, and derives an equation for a direct calculation of the factor (without iteration). Definite values of the factor seem to be missing in literature. To change this, mass growth factors are being calculated for as many of the prominent passenger aircraft as to cover 90% of the passenger aircraft flying today. The dependence of the mass gain factor on requirements and technology is examined and the relation to Direct Operating Costs (DOC) is pointed out. Methodology - Calculations start from first principles. Publically available data is used to calculate a list of mass growth factors for many passenger aircraft. Using equations and the resulting relationships, new knowledge and dependencies are gained. Findings - The mass growth factor is larger for aircraft with larger operating empty mass ratio, smaller payload ratio, larger specific fuel consumption (SFC), and smaller glide ratio. The mass growth factor increases much with increasing range. The factor depends on an increase in the fixed mass, so this is the same for the payload and empty mass. The mass growth factor for subsonic passenger aircraft is on average 4.2, for narrow body aircraft 3.9 and for wide body aircraft (that tend to fly longer distance) 4.9. In contrast supersonic passenger aircraft show a factor of about 14. Practical implications - The mass growth factor has been revisited in order to fully embrace the concept of mass growth and may lead to a better general understanding of aircraft design. Social implications - A detailed discussion of flight and aircraft costs as well as aircraft development requires detailed knowledge of the aircraft. By understanding the mass growth factor, consumers can have this discussion with industry at eye level. Originality/value - The derivation of the equation for the direct calculation of the mass growth factor and the determination of the
Plant diseases can cause severe losses in agricultural production, impacting food security and safety. Early detection of plant diseases is crucial to minimize crop damage and ensure agricultural sustainability. Manua...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
暂无评论