This paper presents a novel approach for generating intricate Batik motifs using a modified Diffusion-Generative Adversarial Network (Diffusion-GAN) augmented with StyleGAN2-Ada. Motivated by the rich cultural heritag...
详细信息
Ecological validity remains essential for generalizing scientific research into real-world applications. However, current methods for crowd emotion detection lack ecological validity due to limited diversity samples i...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
A sustainably governed water-ecosystem at village-level is crucial for the community's well-being. It requires understanding natures’ limits to store and yield water and balance it with the stakeholders’ needs, ...
详细信息
Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scru...
详细信息
Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scrutinize changes made to source code. However, in large-scale open-source projects, selecting the most suitable reviewers for a specific change can be a challenging task. To address this, we introduce the Code Context Based Reviewer Recommendation (CCB-RR), a model that leverages information from changesets to recommend the most suitable reviewers. The model takes into consideration the paths of modified files and the context derived from the changesets, including their titles and descriptions. Additionally, CCB-RR employs KeyBERT to extract the most relevant keywords and compare the semantic similarity across changesets. The model integrates the paths of modified files, keyword information, and the context of code changes to form a comprehensive picture of the changeset. We conducted extensive experiments on four open-source projects, demonstrating the effectiveness of CCB-RR. The model achieved a Top-1 accuracy of 60%, 55%, 51%, and 45% on the Android, OpenStack, QT, and LibreOffice projects respectively. For Mean Reciprocal Rank (MRR), CCB achieved 71%, 62%, 52%, and 68% on the same projects respectively, thereby highlighting its potential for practical application in code reviewer recommendation.
Rice fields all across the world are affected by spikelet sterility, often known as rice spikelet's disease. It is characterized by the improper development of spikelet’s, which lowers grain output and quality. F...
详细信息
Human action recognition is applicable in different domains. Previously proposed methods cannot appropriately consider the sequence of sub-actions. Herein, we propose a semantical action model based on the sequence of...
详细信息
Voice casting is one of the most crucial aspects of dubbing and localization, which consists of adapting audio-visual content from one language and culture to another. Dubbing is widely used in various industries, suc...
详细信息
In the realm of medical datasets, particularly when considering diabetes, the occurrence of data incompleteness is a prevalent issue. Unveiling valuable patterns through medical data analysis is crucial for early and ...
详细信息
Dear Editor,This letter presents a novel process monitoring model based on ensemble structure analysis(ESA).The ESA model takes advantage of principal component analysis(PCA),locality preserving projections(LPP),and m...
详细信息
Dear Editor,This letter presents a novel process monitoring model based on ensemble structure analysis(ESA).The ESA model takes advantage of principal component analysis(PCA),locality preserving projections(LPP),and multi-manifold projections(MMP)models,and then combines the multiple solutions within an ensemble result through Bayesian *** the developed ESA model,different structure features of the given dataset are taken into account simultaneously,the suitability and reliability of the ESA-based monitoring model are then illustrated through ***:The requirement for ensuring safe operation and improving process efficiency has led to increased research activity in the field of process monitoring.
暂无评论