This article studies composite neural learning-based adaptive failure compensation control issues for the autonomous surface vehicle with full-state constraints. Initially, the control strategy solve the problems of c...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
In this article, a neuroadaptive event-triggered containment control strategy combined with the dynamic surface control (DSC) approach is proposed for nonlinear multiagent systems (MASs) with input saturation. Based o...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...
详细信息
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate *** this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in *** support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the *** the model complexity and the overall model *** fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA *** far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no ***,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA *** indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that *** the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model *** Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
Water quality monitoring in aquaculture involves classifying and analyzing the collected data to assess the water quality that is appropriate for breeding, rearing and harvesting aquatic organisms. Systematic data cla...
详细信息
University campuses frequently face complex emergencies such as natural disasters, medical emergencies, and safety threats, posing significant challenges to the design of emergency response systems. Given the rapid ad...
详细信息
1 Introduction Document-level Role Filler Extraction aims to identify those spans of text that denote the role fillers for each event described in the document[1].Despite achieving certain accomplishments,existing met...
详细信息
1 Introduction Document-level Role Filler Extraction aims to identify those spans of text that denote the role fillers for each event described in the document[1].Despite achieving certain accomplishments,existing methods are still not effective due to the following two issues:(1)there are difficulties in contextual modeling of long text,which requires modeling and understanding coherence and connections across sentences and paragraphs;(2)there usually ignore the explicit dependency relationships between event elements displayed in long *** this end,we propose a novel graph-augmented approach for document-level event role filler extraction,named element relational graph-augmented multi-granularity contextualized encoder(ERGM),whose main idea is to effectively enhance the model's capabilities in capturing deep semantic information of events in long texts and modeling dependency relationships among event elements by incorporating the Event elements relational ***,this method first constructs the structural graph by extracting elements from the source document.
In the context of Intelligent Transportation Systems (ITS), the role of vehicle detection and classification is indispensable for streamlining transportation management, refining traffic control, and conducting in-dep...
详细信息
A broad-ranging consciousness-raising movement of mathematical ideas is dawning accompanying the onset of 6G science, that promises ubiquitous and flowing relations. Many visualize the inclusion of quantum computing (...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
暂无评论