咨询与建议

限定检索结果

文献类型

  • 1,664 篇 会议
  • 1,000 篇 期刊文献
  • 12 册 图书

馆藏范围

  • 2,676 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,807 篇 工学
    • 976 篇 计算机科学与技术...
    • 834 篇 软件工程
    • 344 篇 信息与通信工程
    • 322 篇 控制科学与工程
    • 283 篇 机械工程
    • 240 篇 电气工程
    • 212 篇 电子科学与技术(可...
    • 161 篇 仪器科学与技术
    • 148 篇 化学工程与技术
    • 144 篇 生物工程
    • 126 篇 光学工程
    • 123 篇 动力工程及工程热...
    • 123 篇 生物医学工程(可授...
    • 89 篇 材料科学与工程(可...
    • 60 篇 冶金工程
    • 52 篇 建筑学
    • 49 篇 交通运输工程
  • 1,052 篇 理学
    • 504 篇 数学
    • 326 篇 物理学
    • 172 篇 统计学(可授理学、...
    • 162 篇 生物学
    • 148 篇 化学
    • 117 篇 系统科学
    • 92 篇 地球物理学
  • 435 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 146 篇 图书情报与档案管...
    • 78 篇 工商管理
  • 89 篇 医学
    • 78 篇 临床医学
    • 69 篇 基础医学(可授医学...
    • 55 篇 药学(可授医学、理...
  • 52 篇 农学
  • 38 篇 经济学
  • 37 篇 法学
  • 14 篇 教育学
  • 12 篇 文学
  • 9 篇 艺术学
  • 5 篇 军事学
  • 1 篇 哲学

主题

  • 70 篇 feature extracti...
  • 43 篇 automation
  • 42 篇 accuracy
  • 39 篇 semantics
  • 35 篇 data mining
  • 35 篇 training
  • 32 篇 deep learning
  • 32 篇 machine learning
  • 30 篇 computational mo...
  • 27 篇 support vector m...
  • 27 篇 cosmic rays
  • 26 篇 predictive model...
  • 25 篇 neural networks
  • 25 篇 mathematical mod...
  • 24 篇 educational inst...
  • 23 篇 image segmentati...
  • 23 篇 optimization
  • 22 篇 gamma rays
  • 21 篇 control systems
  • 21 篇 data models

机构

  • 791 篇 faculty of infor...
  • 268 篇 school of inform...
  • 122 篇 yunnan observato...
  • 121 篇 university of ch...
  • 105 篇 university of sc...
  • 103 篇 center for astro...
  • 100 篇 hebei normal uni...
  • 100 篇 state key labora...
  • 100 篇 school of physic...
  • 98 篇 tianfu cosmic ra...
  • 98 篇 college of physi...
  • 98 篇 school of physic...
  • 96 篇 key laboratory f...
  • 96 篇 institute of fro...
  • 95 篇 national space s...
  • 95 篇 moscow institute...
  • 94 篇 school of physic...
  • 92 篇 school of astron...
  • 89 篇 yunnan key labor...
  • 87 篇 department of ph...

作者

  • 92 篇 yu zhengtao
  • 91 篇 axikegu
  • 85 篇 danzengluobu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 78 篇 bastieri d.
  • 78 篇 jiang k.
  • 78 篇 kuleshov d.
  • 78 篇 liu d.
  • 78 篇 liu s.m.
  • 78 篇 huang d.h.
  • 78 篇 dai h.l.
  • 78 篇 guo y.q.
  • 78 篇 bao y.w.
  • 77 篇 chen m.j.
  • 76 篇 li cheng
  • 76 篇 hu h.b.
  • 75 篇 liu b.
  • 73 篇 li xin
  • 73 篇 min z.

语言

  • 2,351 篇 英文
  • 223 篇 其他
  • 103 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 日文
检索条件"机构=Faculty of Information Engineering and Automation of Kunming University of Science and Technology"
2676 条 记 录,以下是71-80 订阅
排序:
Chinese Grammatical Error Correction via Large Language Model Guided Optimization Training  23rd
Chinese Grammatical Error Correction via Large Language Mod...
收藏 引用
23rd China National Conference on Computational Linguistics, CCL 2024
作者: Liu, Xiao Li, Ying Yu, Zhengtao Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming China Yunnan Key Laboratory of Artificial Intelligence Kunming China
Pre-trained language model-based methods for Chinese Grammatical Error Correction (CGEC) are categorized into Seq2Seq and Seq2Edit types. However, both Seq2Seq and Seq2Edit models depend on high-quality training data ... 详细信息
来源: 评论
A Remaining Useful Life Prediction of Turbofan Engines Based on Multi-Scale Temporal Convolutional Networks with Dual Squeeze-Excitation Attention Mechanism
A Remaining Useful Life Prediction of Turbofan Engines Based...
收藏 引用
2024 International Conference on Computational Intelligence and Communication System, CCICS 2024
作者: Wang, Hairui Li, Dongjun Li, Dongwen Li, Ya Zhu, Guifu Faculty of Information Engineering and Automation Kunming University of Science and Technology Yunnan Kunming650504 China Information Technology Construction Management Center Kunming University of Science and Technology Yunnan Kunming650504 China
To better handle temporal data and delve into learning the features of the data, a turbofan engine residual life prediction method is proposed, which integrates a dual-squeeze-excitation attention mechanism with a mul... 详细信息
来源: 评论
Convolutional Neural Networks Aided Reinforcement Learning for Accelerated Optimization of Antenna Topology
收藏 引用
Applied Computational Electromagnetics Society Journal 2025年 第1期40卷 35-41页
作者: Dou, Jiangling Gong, Hao Wei, Shuaibing Chen, Haokang Chen, Yujie Shen, Tao Song, Jian Yunnan Key Laboratory of Computer Technologies Application Kunming University of Science and Technology Kunming650500 China School of Information Engineering and Automation Kunming University of Science and Technology Kunming650500 China College of Mechanical and Electrical Engineering Yunnan Electromechanical Vocational and Technical College Kunming650500 China
A machine learning (ML) framework is proposed to achieve the automatic and rapid optimization of antenna topologies. A convolutional neural network (CNN) is utilized as a surrogate model (SM) and is combined with rein... 详细信息
来源: 评论
USDE-Based Task-Space Bilateral Teleoperator Control Design with Time Delay  16th
USDE-Based Task-Space Bilateral Teleoperator Control Design ...
收藏 引用
16th International Conference on Modelling, Identification and Control, ICMIC 2024
作者: Luo, Xin Ma, Jun Wang, Xian Na, Jing Xing, Yashan Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming650500 China Faculty of Mechanical and Electrical Engineering Kunming University of Science and Technology Kunming650500 China Yunnan Key Laboratory of Intelligent Control and Application Kunming University of Science and Technology Kunming650500 China
In this paper, we present a control strategy for bilateral teleoperators operated in the task space, which is designed to estimate the uncertain dynamics. To implement this proposed strategy, we develop a straightforw... 详细信息
来源: 评论
Soft Sensor Development Based on Large-Scale Pseudo Labeling Optimization  13
Soft Sensor Development Based on Large-Scale Pseudo Labeling...
收藏 引用
13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024
作者: Liu, Guangkun Jin, Huaiping Wang, Bin Yang, Biao Qian, Bin Kunming University of Science and Technology Faculty of Information Engineering and Automation Department of Automation Kunming650500 China Kunming University of Science and Technology Yunnan Key Laboratory of Artificial Intelligence Kunming650500 China
Data-driven soft sensor techniques enable online prediction of key quality variables. However, in real industry, the expensive cost of manual labeling leads to the abundance of unlabeled data and the scarcity of label... 详细信息
来源: 评论
A Deep Learning Soft Sensor Based on Domain-Invariant Features Extraction and Online Local Adaptation  13
A Deep Learning Soft Sensor Based on Domain-Invariant Featur...
收藏 引用
13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024
作者: Wang, Yelei Jin, Huaiping Wang, Bin Yang, Biao Kunming University of Science and Technology Faculty of Information Engineering and Automation Department of Automation Kunming650500 China Kunming University of Science and Technology Yunnan Key Laboratory of Artificial Intelligence Kunming650500 China
Data-driven approaches, especially those based on deep learning, have received much attention in quality prediction in the modern process industry. However, in practice, industrial data are often generated in the form... 详细信息
来源: 评论
End-to-end Relation-Enhanced Learnable Graph Self-attention Network for Knowledge Graphs Embedding  18th
End-to-end Relation-Enhanced Learnable Graph Self-attention ...
收藏 引用
18th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2023
作者: Jiang, Shengchen Wang, Hongbin Hou, Xiang Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming650500 China College of Automation Chongqing University Chongqing400044 China
The knowledge graphs embedding performance of the classic graph convolutional network has been limited due to the large-scale knowledge information. The complex knowledge information requires the model for better lear... 详细信息
来源: 评论
Soft Sensor Method based on Quality-related Virtual Sample Generation and Sample-weighted Learning  13
Soft Sensor Method based on Quality-related Virtual Sample G...
收藏 引用
13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024
作者: Dong, Shuang Jin, Huaiping Wang, Bin Yang, Biao Liu, Haipeng Kunming University of Science and Technology Faculty of Information Engineering and Automation Department of Automation Kunming650500 China Kunming University of Science and Technology Yunnan Key Laboratory of Artificial Intelligence Kunming650500 China
In process industry, data-driven soft sensor often faces the problem of data shortage in modeling due to factors such as high cost of label samples acquisition and high data repetition rate. The virtual sample generat... 详细信息
来源: 评论
Improved Deeplabv3+ Method for the Panax Notoginseng Disease Segmentation  11
Improved Deeplabv3+ Method for the Panax Notoginseng Disease...
收藏 引用
11th International Conference on information Systems and Computing technology, ISCTech 2023
作者: Lei, Lian Wang, Zilong Wang, Ruoxi Shen, Tao Yang, Qiliang Yang, Ling Kunming University of Science and Technology Faculty of Information Engineering and Automation Kunming China Kunming University of Science and Technology Faculty of Modern Agricultural Engineering Kunming China
Panax notoginseng diseases seriously affect Panax notoginseng yield and quality. The Panax notoginseng diseases precise identification and segmentation can provide the basis for disease control and treatment. Deep lea... 详细信息
来源: 评论
DDT-Net:Deep Detail Tracking Network for Image Tampering Detection
收藏 引用
Computers, Materials & Continua 2025年 第5期83卷 3451-3469页
作者: Jim Wong Zhaoxiang Zang Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering China Three Gorges UniversityYichang443002China College of Computer and Information Technology ChinaThree Gorges UniversityYichang443002China Faculty of Information Engineering and Automation Kunming University of Science and TechnologyKunming650504China
In the field of image forensics,image tampering detection is a critical and challenging *** methods based on manually designed feature extraction typically focus on a specific type of tampering operation,which limits ... 详细信息
来源: 评论