Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
Internet of Things (IoT) technology quickly transformed traditional management and engagement techniques in several sectors. This work explores the trends and applications of the Internet of Things in industries, incl...
详细信息
This research proposes a novel artificial decision-marking framework suitable for modern smart sensor networks and carbon-based biosensor systems which deals with uncertainty and the peculiarity of the data. To achiev...
详细信息
Detecting plagiarism in documents is a well-established task in natural language processing (NLP). Broadly, plagiarism detection is categorized into two types (1) intrinsic: to check the whole document or all the pass...
详细信息
Detecting plagiarism in documents is a well-established task in natural language processing (NLP). Broadly, plagiarism detection is categorized into two types (1) intrinsic: to check the whole document or all the passages have been written by a single author;(2) extrinsic: where a suspicious document is compared with a given set of source documents to figure out sentences or phrases which appear in both documents. In the pursuit of advancing intrinsic plagiarism detection, this study addresses the critical challenge of intrinsic plagiarism detection in Urdu texts, a language with limited resources for comprehensive language models. Acknowledging the absence of sophisticated large language models (LLMs) tailored for Urdu language, this study explores the application of various machine learning, deep learning, and language models in a novel framework. A set of 43 stylometry features at six granularity levels was meticulously curated, capturing linguistic patterns indicative of plagiarism. The selected models include traditional machine learning approaches such as logistic regression, decision trees, SVM, KNN, Naive Bayes, gradient boosting and voting classifier, deep learning approaches: GRU, BiLSTM, CNN, LSTM, MLP, and large language models: BERT and GPT-2. This research systematically categorizes these features and evaluates their effectiveness, addressing the inherent challenges posed by the limited availability of Urdu-specific language models. Two distinct experiments were conducted to evaluate the impact of the proposed features on classification accuracy. In experiment one, the entire dataset was utilized for classification into intrinsic plagiarized and non-plagiarized documents. Experiment two categorized the dataset into three types based on topics: moral lessons, national celebrities, and national events. Both experiments are thoroughly evaluated through, a fivefold cross-validation analysis. The results show that the random forest classifier achieved an ex
Face verification systems are critical in a wide range of applications,such as security systems and biometric ***,these systems are vulnerable to adversarial attacks,which can significantly compromise their accuracy a...
详细信息
Face verification systems are critical in a wide range of applications,such as security systems and biometric ***,these systems are vulnerable to adversarial attacks,which can significantly compromise their accuracy and *** attacks are designed to deceive the face verification system by adding subtle perturbations to the input *** perturbations can be imperceptible to the human eye but can cause the systemtomisclassifyor fail torecognize thepersoninthe *** this issue,weproposeanovel system called VeriFace that comprises two defense mechanisms,adversarial detection,and adversarial *** first mechanism,adversarial detection,is designed to identify whether an input image has been subjected to adversarial *** second mechanism,adversarial removal,is designed to remove these perturbations from the input image to ensure the face verification system can accurately recognize the person in the *** evaluate the effectiveness of the VeriFace system,we conducted experiments on different types of adversarial attacks using the Labelled Faces in the Wild(LFW)*** results show that the VeriFace adversarial detector can accurately identify adversarial imageswith a high detection accuracy of 100%.Additionally,our proposedVeriFace adversarial removalmethod has a significantly lower attack success rate of 6.5%compared to state-of-the-art removalmethods.
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ...
详细信息
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are *** addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time *** is resulting in TD missing potential offloading opportunities in the *** fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic *** Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time *** framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning *** results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.
The challenge of bankruptcy prediction, critical for averting financial sector losses, is amplified by the prevalence of imbalanced datasets, which often skew prediction models. Addressing this, our study introduces t...
详细信息
Abnormal event detection in video surveillance is critical for security, traffic management, and industrial monitoring applications. This paper introduces an innovative methodology for anomaly detection in video data,...
详细信息
暂无评论