Many things, such as goods, products, and websites are evaluated based on user's notes and comments. One popular research project is sentiment analysis, which aims to extract information from notes and comments as...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce ***,this trend introduces security challenges,such as unauthorized *** access control systems,such as Attribute-Base...
详细信息
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce ***,this trend introduces security challenges,such as unauthorized *** access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and *** paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN *** technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access *** proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy ***,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern ***,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.
Showing the design and layout of the building using a model, making this model requires time and accuracy because the model is built on a scale that has been adjusted to the building to be made later, a problem that o...
详细信息
With the rise of Arabic digital content, effective summarization methods are essential. Current Arabic text summarization systems face challenges such as language complexity and vocabulary limitations. We introduce an...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
Diabetes disease is prevalent worldwide, and predicting its progression is crucial. Several model have been proposed to predict such disease. Those models only determine the disease label, leaving the likelihood of de...
详细信息
Classifying textual data is crucial in the expanding digital landscape, especially for underrepresented cursive languages like Urdu, which pose unique challenges due to their intricate linguistic features and vast dig...
详细信息
Liver cirrhosis often occurs as a result of the lengthy and persistent progression of chronic liver disorders. It is a key crucial cause of death on a global scale. Early diagnosis and identification of cirrhosis are ...
详细信息
To solve the problems of vote forgery and malicious election of candidate nodes in the Raft consensus algorithm, we combine zero trust with the Raft consensus algorithm and propose a secure and efficient consensus alg...
详细信息
暂无评论