This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod...
详细信息
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode *** algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low *** offshore wind power generation system model is presented to verify the algorithm *** offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/*** with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational ***,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation *** results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.
Image copy-move forgery detection (CMFD) has become a challenging problem due to increasingly powerful editing software that makes forged images increasingly realistic. Existing algorithms that directly connect multip...
详细信息
computer-generated aesthetic patterns arewidely used as design materials in various fields. Themost common methods use fractals or dynamicalsystems as basic tools to create various patterns. Toenhance aesthetics and c...
详细信息
computer-generated aesthetic patterns arewidely used as design materials in various fields. Themost common methods use fractals or dynamicalsystems as basic tools to create various patterns. Toenhance aesthetics and controllability, some researchershave introduced symmetric layouts along with thesetools. One popular strategy employs dynamical systemscompatible with symmetries that construct functionswith the desired symmetries. However, these aretypically confined to simple planar symmetries. Theother generates symmetrical patterns under theconstraints of tilings. Although it is slightly moreflexible, it is restricted to small ranges of tilingsand lacks textural variations. Thus, we proposed anew approach for generating aesthetic patterns bysymmetrizing quasi-regular patterns using general kuniformtilings. We adopted a unified strategy toconstruct invariant mappings for k-uniform tilings thatcan eliminate texture seams across the tiling ***, we constructed three types of symmetriesassociated with the patterns: dihedral, rotational, andreflection symmetries. The proposed method can beeasily implemented using GPU shaders and is highlyefficient and suitable for complicated tiling with regularpolygons. Experiments demonstrated the advantages of our method over state-of-the-art methods in terms offlexibility in controlling the generation of patterns withvarious parameters as well as the diversity of texturesand styles.
Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment *** this study,we aimed to develop an integrated method for predicting efflue...
详细信息
Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment *** this study,we aimed to develop an integrated method for predicting effluent COD and NH3 *** employed a 200 L pilot-scale sequencing batch reactor(SBR)to gather multimodal data from urban sewage over 40 *** we collected data on critical parameters like COD,DO,pH,NH_(3),EC,ORP,SS,and water temperature,alongside wastewater surface images,resulting in a data set of approximately 40246 *** we proposed a brain-inspired image and temporal fusion model integrated with a CNN-LSTM network(BITF-CL)using this *** innovative model synergized sewage imagery with water quality data,enhancing prediction *** a result,the BITF-CL model reduced prediction error by over 23%compared to traditional methods and still performed comparably to conventional techniques even without using DO and SS sensor ***,this research presents a cost-effective and precise prediction system for sewage treatment,demonstrating the potential of brain-inspired models.
Reinforcement learning holds promise in enabling robotic tasks as it can learn optimal policies via trial and ***,the practical deployment of reinforcement learning usually requires human intervention to provide episo...
详细信息
Reinforcement learning holds promise in enabling robotic tasks as it can learn optimal policies via trial and ***,the practical deployment of reinforcement learning usually requires human intervention to provide episodic resets when a failure *** manual resets are generally unavailable in autonomous robots,we propose a reset-free reinforcement learning algorithm based on multi-state recovery and failure prevention to avoid failure-induced *** multi-state recovery provides robots with the capability of recovering from failures by self-correcting its behavior in the problematic state and,more importantly,deciding which previous state is the best to return to for efficient *** failure prevention reduces potential failures by predicting and excluding possible unsafe actions in specific *** simulations and real-world experiments are used to validate our algorithm with the results showing a significant reduction in the number of resets and failures during the learning.
The multitude of airborne point clouds limits the point cloud processing *** are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing ***,existing s...
详细信息
The multitude of airborne point clouds limits the point cloud processing *** are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing ***,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a *** feature inconsistencies degrade the performance of subsequent ***,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral information is proposed to facilitate the consistency of geometric structures and object attributes within segmented *** the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is *** are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification *** experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine...
详细信息
The emergence of the novel COVID-19 virus has had a profound impact on global healthcare systems and economies, underscoring the imperative need for the development of precise and expeditious diagnostic tools. Machine learning techniques have emerged as a promising avenue for augmenting the capabilities of medical professionals in disease diagnosis and classification. In this research, the EFS-XGBoost classifier model, a robust approach for the classification of patients afflicted with COVID-19 is proposed. The key innovation in the proposed model lies in the Ensemble-based Feature Selection (EFS) strategy, which enables the judicious selection of relevant features from the expansive COVID-19 dataset. Subsequently, the power of the eXtreme Gradient Boosting (XGBoost) classifier to make precise distinctions among COVID-19-infected patients is *** EFS methodology amalgamates five distinctive feature selection techniques, encompassing correlation-based, chi-squared, information gain, symmetric uncertainty-based, and gain ratio approaches. To evaluate the effectiveness of the model, comprehensive experiments were conducted using a COVID-19 dataset procured from Kaggle, and the implementation was executed using Python programming. The performance of the proposed EFS-XGBoost model was gauged by employing well-established metrics that measure classification accuracy, including accuracy, precision, recall, and the F1-Score. Furthermore, an in-depth comparative analysis was conducted by considering the performance of the XGBoost classifier under various scenarios: employing all features within the dataset without any feature selection technique, and utilizing each feature selection technique in isolation. The meticulous evaluation reveals that the proposed EFS-XGBoost model excels in performance, achieving an astounding accuracy rate of 99.8%, surpassing the efficacy of other prevailing feature selection techniques. This research not only advances the field of COVI
This letter presents a dispersion compensation method that integrates a comb-shaped slow-wave structure with a defected ground structure (DGS) to achieve wideband low-sidelobe performance. This method effectively ensu...
详细信息
This article is concerned with sampled-data synchronization problem of heterogeneous delays inertial neural networks (INNs) with generally uncertain semi-Markovian (GUSM) jumping. Different from traditional Markovian ...
详细信息
In this paper, we present an efficient convolutional neural network (CNN)-based model to estimate both elevation and azimuth arrival angles of multiple sources with high resolution (small source angular separation). T...
详细信息
暂无评论