咨询与建议

限定检索结果

文献类型

  • 1,185 篇 期刊文献
  • 1,098 篇 会议
  • 33 册 图书

馆藏范围

  • 2,316 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,434 篇 工学
    • 834 篇 计算机科学与技术...
    • 705 篇 软件工程
    • 293 篇 信息与通信工程
    • 287 篇 控制科学与工程
    • 206 篇 电气工程
    • 169 篇 生物工程
    • 162 篇 生物医学工程(可授...
    • 157 篇 电子科学与技术(可...
    • 141 篇 光学工程
    • 127 篇 仪器科学与技术
    • 125 篇 机械工程
    • 87 篇 化学工程与技术
    • 83 篇 航空宇航科学与技...
    • 71 篇 材料科学与工程(可...
    • 66 篇 动力工程及工程热...
    • 51 篇 力学(可授工学、理...
  • 947 篇 理学
    • 415 篇 数学
    • 333 篇 物理学
    • 213 篇 生物学
    • 138 篇 统计学(可授理学、...
    • 103 篇 化学
    • 103 篇 系统科学
    • 85 篇 地球物理学
  • 343 篇 管理学
    • 214 篇 管理科学与工程(可...
    • 125 篇 图书情报与档案管...
    • 104 篇 工商管理
  • 172 篇 医学
    • 139 篇 临床医学
    • 109 篇 基础医学(可授医学...
    • 63 篇 公共卫生与预防医...
    • 58 篇 药学(可授医学、理...
  • 46 篇 经济学
  • 43 篇 教育学
  • 41 篇 法学
  • 29 篇 农学
  • 4 篇 文学
  • 4 篇 军事学
  • 2 篇 艺术学

主题

  • 52 篇 machine learning
  • 46 篇 deep learning
  • 46 篇 neural networks
  • 45 篇 feature extracti...
  • 43 篇 training
  • 39 篇 artificial intel...
  • 39 篇 intelligent syst...
  • 34 篇 accuracy
  • 32 篇 reinforcement le...
  • 30 篇 systems engineer...
  • 30 篇 computational mo...
  • 30 篇 robustness
  • 28 篇 predictive model...
  • 27 篇 semantics
  • 26 篇 control systems
  • 25 篇 convolutional ne...
  • 24 篇 data mining
  • 24 篇 information scie...
  • 22 篇 optimization
  • 22 篇 robots

机构

  • 66 篇 nagoya universit...
  • 64 篇 department of el...
  • 55 篇 department of ph...
  • 54 篇 national institu...
  • 51 篇 infn sezione di ...
  • 50 篇 center for space...
  • 50 篇 faculty of scien...
  • 48 篇 department of ph...
  • 48 篇 faculty of engin...
  • 45 篇 department of ph...
  • 43 篇 waseda research ...
  • 43 篇 department of ph...
  • 43 篇 department of as...
  • 41 篇 quantum ict adva...
  • 41 篇 school of intell...
  • 41 篇 infn sezione di ...
  • 41 篇 via madonna del ...
  • 40 篇 institute of spa...
  • 40 篇 department of ph...
  • 38 篇 astroparticle ph...

作者

  • 65 篇 katayose y.
  • 65 篇 shiomi a.
  • 65 篇 ozawa s.
  • 63 篇 munakata k.
  • 57 篇 tamura t.
  • 57 篇 castellini g.
  • 57 篇 uchihori y.
  • 57 篇 ebisawa k.
  • 57 篇 yoshida a.
  • 57 篇 bongi m.
  • 57 篇 asano k.
  • 57 篇 bigongiari g.
  • 57 篇 collazuol g.
  • 57 篇 nakahira s.
  • 56 篇 cherry m.l.
  • 56 篇 mori m.
  • 55 篇 kawakubo y.
  • 55 篇 binns w.r.
  • 54 篇 israel m.h.
  • 54 篇 spillantini p.

语言

  • 2,106 篇 英文
  • 185 篇 其他
  • 17 篇 中文
  • 7 篇 日文
  • 1 篇 德文
  • 1 篇 俄文
检索条件"机构=Faculty of Intelligent Systems Engineering and Data Science"
2316 条 记 录,以下是1091-1100 订阅
排序:
A Brief Review of Explainable Artificial Intelligence in Healthcare
SSRN
收藏 引用
SSRN 2023年
作者: Sadeghi, Zahra Alizadehsani, Roohallah Cifci, Mehmet Akif Kausar, Samina Rehman, Rizwan Mahanta, Priyakshi Bora, Pranjal Kumar Almasri, Ammar Alkhawaldeh, Rami S. Hussain, Sadiq Alatas, Bilal Shoeibi, Afshin Moosaei, Hossein Hladík, Milan Nahavandi, Saeid Pardalo, Panos M. Institute for Big Data Analytics Faculty of Computer Science Dalhousie University Canada Deakin University Geelong Australia The Institute of Computer Technology Tu Wien University Vienna1040 Austria University of Kotli Azad Jammu and Kashmir Azad Kashmir Kotli Pakistan Centre for Computer Science and Applications Dibrugarh University Assam India Department of Management Information Sys Al-Balqa Applied University Salt19117 Jordan Department of Computer Information Systems The University of Jordan Aqaba77110 Jordan Examination Branch Dibrugarh University Assam Dibrugarh India Department of Software Eng. Firat University Elazig23100 Turkey Data Science and Computational Intelligence Institute University of Granada Spain Department of Informatics Faculty of Science Jan Evangelista Purkyně University in Ústí nad Labem Czech Republic Department of Applied Mathematics School of Computer Science Faculty of Mathematics and Physics Charles University Prague Czech Republic Harvard Paulson School of Engineering and Applied Sciences Harvard University AllstonMA02134 United States Swinburne University of Technology HawthornVIC3122 Australia Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida Gainesville32611 United States
XAI refers to the techniques and methods for building AI applications which assist end users to interpret output and predictions of AI models. Black box AI applications in high-stakes decision-making situations, such ... 详细信息
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: a review
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Sibo Bocquet, Marc Ding, Weiping Finn, Tobias Sebastian Fu, Rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, Dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, Rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China Centre for Health Informatics Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Department of Community Health Sciences Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1E 6BT United Kingdom Concordia Institute for Information Systems Engineering Concordia University MontrealQCH3G 1M8 Canada School of Mechanical Medical and Process Engineering Faculty of Engineering Queensland University of Technology BrisbaneQLD Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论
Experimental Study on the Zebra Crossing Behavior of Mixed Bicycles and Pedestrians
SSRN
收藏 引用
SSRN 2022年
作者: Ma, Jian Wang, Qiao Chen, Juan Jiang, Rui Song, Weiguo Li, Ruoyu Lian, Liping School of Transportation and Logistics National Engineering Laboratory of Integrated Transportation Big Data Application Technology National United Engineering Laboratory of Integrated and Intelligent Transportation Southwest Jiaotong University Chengdu610031 China Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu610031 China Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport Ministry of Transport Beijing Jiaotong University Beijing100044 China State Key Laboratory of Fire Science University of Science and Technology of China Hefei230027 China School of Urban Planning and Design Peking University Shenzhen Graduate School School of Architectural Engineering Shenzhen Polytechnic Shenzhen518055 China
Slow transportation mode, consisting of walking and cycling, plays an important role in urban traffic system. Based on the fact that bicycles and pedestrians often share the common road facility, we conducted bicycle-... 详细信息
来源: 评论
Retrospective for the Dynamic Sensorium Competition for predicting large-scale mouse primary visual cortex activity from videos  38
Retrospective for the Dynamic Sensorium Competition for pred...
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Turishcheva, Polina Fahey, Paul G. Vystrčilová, Michaela Hansel, Laura Froebe, Rachel Ponder, Kayla Qiu, Yongrong Willeke, Konstantin F. Bashiri, Mohammad Baikulov, Ruslan Zhu, Yu Ma, Lei Yu, Shan Huang, Tiejun Li, Bryan M. De Wulf, Wolf Kudryashova, Nina Hennig, Matthias H. Rochefort, Nathalie L. Onken, Arno Wang, Eric Ding, Zhiwei Tolias, Andreas S. Sinz, Fabian H. Ecker, Alexander S. Institute of Computer Science and Campus Institute Data Science University of Göttingen Germany Department of Neuroscience Center for Neuroscience and Artificial Intelligence Baylor College of Medicine HoustonTX United States Department of Ophthalmology Byers Eye Institute Stanford University School of Medicine StanfordCA United States Stanford Bio-X Stanford University StanfordCA United States Wu Tsai Neurosciences Institute Stanford University StanfordCA United States International Max Planck Research School for Intelligent Systems Tübingen Germany Institute for Bioinformatics and Medical Informatics Tübingen University Germany lRomul Russia Institute of Automation Chinese Academy of Sciences China Beijing Academy of Artificial Intelligence China The Alan Turing Institute United Kingdom School of Informatics University of Edinburgh United Kingdom Centre for Discovery Brain Sciences University of Edinburgh United Kingdom Simons Initiative for the Developing Brain University of Edinburgh United Kingdom Department of Electrical Engineering Stanford University StanfordCA United States Max Planck Institute for Dynamics and Self-Organization Göttingen Germany
Understanding how biological visual systems process information is challenging because of the nonlinear relationship between visual input and neuronal responses. Artificial neural networks allow computational neurosci...
来源: 评论
SmartCHANGE: AI-based long-term health risk evaluation for driving behaviour change strategies in children and youth
SmartCHANGE: AI-based long-term health risk evaluation for d...
收藏 引用
International Conference on Applied Mathematics & Computer science (ICAMCS)
作者: Nina Reščič Janna Alberts Teatske M. Altenburg Mai J. M. Chinapaw Antonio De Nigro Dario Fenoglio Martin Gjoreski Anton Gradišek Gregor Jurak Athanasios Kiourtis Dimosthenis Kyriazis Marc Langheinrich Elena Mancuso Argyro Mavrogiorgou Mykola Pechenizkiy Roberto Pratola José Ribeiro Maroje Sorić Fawad Taj Tuija H. Tammelin Martijn Vastenburg Anna Vilanova Tanja G. M. Vrijkotte Mitja Luštrek Department of Intelligent Systems Jožef Stefan Institute Ljubljana Slovenia Research & Development ConnectedCare Nijmegen The Netherlands Department of Public and Occupational Health Amsterdam UMC Amsterdam Public Health Research Institute Vrije Universiteit Amsterdam Amsterdam The Netherlands Engineering Ingegneria Informatica S.p.A. Rome Italy Faculty of Informatics Università Della Svizzera Italiana Lugano Switzerland Faculty of Sports University of Ljubljana Ljubljana Slovenia Department of Digital Systems University of Piraeus Piraeus Greece Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven Netherlands Faculty of Sport University of Porto Porto Portugal Likes School of Health and Social Studies Jamk University of Applied Sciences Jyväskylä Finland
The SmartCHANGE project, a Horizon-Europe Research & Innovation project that has been ongoing since May 2023 and is scheduled to conclude in April 2027, aims to develop AI-driven decision-support tools to identify...
来源: 评论
Learning event-triggered control from data through joint optimization
arXiv
收藏 引用
arXiv 2020年
作者: Funk, Niklas Baumann, Dominik Berenz, Vincent Trimpe, Sebastian Intelligent Control Systems Group Max Planck Institute for Intelligent Systems Stuttgart Germany Empirical Inference Department Max Planck Institute for Intelligent Systems Tübingen Germany Institute for Data Science in Mechanical Engineering RWTH Aachen University Aachen Germany
We present a framework for model-free learning of event-triggered control strategies. Event-triggered methods aim to achieve high control performance while only closing the feedback loop when needed. This enables reso... 详细信息
来源: 评论
DeepKAF: A Heterogeneous CBR Deep Learning Approach for NLP Prototyping
DeepKAF: A Heterogeneous CBR Deep Learning Approach for NLP ...
收藏 引用
2020 International Conference on INnovations in intelligent systems and Applications, INISTA 2020
作者: Amin, Kareem Kapetanakis, Stelios Polatidis, Nikolaos Althoff, Klaus-Dieter Dengel, Andreas Smart Data and Knowledge Services German Research Center for Artificial Intelligence Technische Universität Kaiserslautern Kaiserslautern Germany School of Computing Engineering and Mathematics University of Brighton Brighton United Kingdom Intelligent Information Systems Lab Institute of Computer Science University of Hildesheim Hildesheim Germany
With widespread modernization, digitization and transformations of most of industries, Artificial Intelligence (AI) has become the key enabler in that modernization journey. AI offers substantial capabilities to solve... 详细信息
来源: 评论
Identification of the decision-making model for selecting an information system  24
Identification of the decision-making model for selecting an...
收藏 引用
24th KES International Conference on Knowledge-Based and intelligent Information and engineering systems, KES 2020
作者: Paradowski, Bartosz Drazek, Zygmunt Research Team on Intelligent Decision Support Systems Department of Artificial Intelligence and Applied Mathematics Faculty of Computer Science and Information Technology West Pomeranian University of Technology in Szczecin ul. Zolnierska 49 Szczecin71-210 Poland Department of Information Systems Engineering Faculty of Economics Finance and Management University of Szczecin Mickiewicza 64 Szczecin71-101 Poland
The right choice of information system for a company plays a vital role, therefore research to make it easier to choose the right IT system is very important. In the paper, we present research on the identification of... 详细信息
来源: 评论
Robust Voltage Control in DC Networks with Uncertain Nonlinear Load Dynamics
Robust Voltage Control in DC Networks with Uncertain Nonline...
收藏 引用
IEEE Conference on Decision and Control
作者: Amirreza Silani Giacomo Casadei Michele Cucuzzella Jan C. Wilems Center for Systems and Control ENTEG Faculty of Science and Engineering University of Groningen AG Groningen The Netherlands Control & Intelligent Processing Center of Excellence School of Electrical and Computer Engineering University of Tehran Tehran Iran Laboratoire Ampere Dpt. EEA of the Ecole Centrale de Lyon Université de Lyon Ecully France Department of Electrical Computer and Biomedical Engineering University of Pavia Pavia Italy
In this letter, we propose a control scheme for regulating the voltage in Direct Current (DC) power networks. In contrast with other works in the literature where the loads are assumed to be constant, we consider unce... 详细信息
来源: 评论
Anomaly detection on attributed networks via contrastive self-supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yixin Li, Zhao Pan, Shirui Gong, Chen Zhou, Chuan Karypis, George The Department of Data Science and AI Faculty of Information Technology Monash University ClaytonVIC3800 Australia The Alibaba Group Hangzhou310000 China The PCA Laboratory Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The Department of Computing The Hong Kong Polytechnic University Hong Kong The Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100093 China The Department of Computer Science and Engineering University of Minnesota MinneapolisMN55455 United States
Anomaly detection on attributed networks attracts considerable research interests due to wide applications of attributed networks in modeling a wide range of complex systems. Recently, the deep learning-based anomaly ... 详细信息
来源: 评论