咨询与建议

限定检索结果

文献类型

  • 1,178 篇 期刊文献
  • 1,098 篇 会议
  • 33 册 图书

馆藏范围

  • 2,309 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,413 篇 工学
    • 828 篇 计算机科学与技术...
    • 695 篇 软件工程
    • 290 篇 信息与通信工程
    • 283 篇 控制科学与工程
    • 201 篇 电气工程
    • 169 篇 生物工程
    • 162 篇 生物医学工程(可授...
    • 153 篇 电子科学与技术(可...
    • 129 篇 光学工程
    • 127 篇 仪器科学与技术
    • 125 篇 机械工程
    • 87 篇 化学工程与技术
    • 83 篇 航空宇航科学与技...
    • 71 篇 材料科学与工程(可...
    • 66 篇 动力工程及工程热...
    • 50 篇 力学(可授工学、理...
  • 935 篇 理学
    • 408 篇 数学
    • 330 篇 物理学
    • 210 篇 生物学
    • 136 篇 统计学(可授理学、...
    • 102 篇 化学
    • 101 篇 系统科学
    • 85 篇 地球物理学
  • 341 篇 管理学
    • 212 篇 管理科学与工程(可...
    • 125 篇 图书情报与档案管...
    • 103 篇 工商管理
  • 169 篇 医学
    • 136 篇 临床医学
    • 107 篇 基础医学(可授医学...
    • 62 篇 公共卫生与预防医...
    • 59 篇 药学(可授医学、理...
  • 46 篇 经济学
  • 42 篇 教育学
  • 41 篇 法学
  • 27 篇 农学
  • 4 篇 文学
  • 4 篇 军事学
  • 2 篇 艺术学

主题

  • 52 篇 machine learning
  • 47 篇 deep learning
  • 47 篇 neural networks
  • 46 篇 feature extracti...
  • 43 篇 training
  • 39 篇 artificial intel...
  • 39 篇 intelligent syst...
  • 34 篇 accuracy
  • 31 篇 reinforcement le...
  • 30 篇 systems engineer...
  • 30 篇 computational mo...
  • 30 篇 robustness
  • 28 篇 predictive model...
  • 26 篇 control systems
  • 25 篇 data mining
  • 25 篇 semantics
  • 25 篇 convolutional ne...
  • 24 篇 information scie...
  • 22 篇 optimization
  • 22 篇 robots

机构

  • 66 篇 nagoya universit...
  • 64 篇 department of el...
  • 56 篇 department of ph...
  • 55 篇 national institu...
  • 51 篇 infn sezione di ...
  • 50 篇 center for space...
  • 50 篇 faculty of scien...
  • 49 篇 department of ph...
  • 49 篇 faculty of engin...
  • 46 篇 department of ph...
  • 44 篇 department of as...
  • 43 篇 waseda research ...
  • 43 篇 department of ph...
  • 43 篇 school of intell...
  • 42 篇 via madonna del ...
  • 41 篇 quantum ict adva...
  • 41 篇 infn sezione di ...
  • 40 篇 institute of spa...
  • 40 篇 department of ph...
  • 38 篇 astroparticle ph...

作者

  • 65 篇 katayose y.
  • 65 篇 shiomi a.
  • 65 篇 ozawa s.
  • 64 篇 munakata k.
  • 57 篇 tamura t.
  • 57 篇 castellini g.
  • 57 篇 uchihori y.
  • 57 篇 ebisawa k.
  • 57 篇 yoshida a.
  • 57 篇 bongi m.
  • 57 篇 asano k.
  • 57 篇 bigongiari g.
  • 57 篇 collazuol g.
  • 57 篇 nakahira s.
  • 56 篇 cherry m.l.
  • 56 篇 mori m.
  • 55 篇 kawakubo y.
  • 55 篇 binns w.r.
  • 55 篇 spillantini p.
  • 54 篇 israel m.h.

语言

  • 1,984 篇 英文
  • 301 篇 其他
  • 21 篇 中文
  • 7 篇 日文
  • 2 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Faculty of Intelligent Systems Engineering and Data Science"
2309 条 记 录,以下是1301-1310 订阅
排序:
Correction to: Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing
收藏 引用
Journal of Cloud Computing 2025年 第1期14卷 1-1页
作者: Zhou, Jincheng Lilhore, Umesh Kumar M, Poongodi Hai, Tao Simaiya, Sarita Abang Jawawi, Dayang Norhayati Alsekait, Deema Mohammed Ahuja, Sachin Biamba, Cresantus Hamdi, Mounir School of Computer and Information and Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Qiannan Normal University for Nationalities Duyun China Department of Computer Science and Engineering Chandigarh University Mohali India College of Science and Engineering Hamad Bin Khalifa University Qatar Foundation Doha Qatar School of Computing Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Malaysia Department of Computer Science and Information Technology Princess Nourah Bint Abdul Rahman University Applied College Riyadh Saudi Arabia Department of Culture Studies Religious Studies and Educational Sciences University of Gävle Gävle Sweden
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
sbi reloaded: a toolkit for simulation-based inference workflows
arXiv
收藏 引用
arXiv 2024年
作者: Boelts, Jan Deistler, Michael Gloeckler, Manuel Tejero-Cantero, Álvaro Lueckmann, Jan-Matthis Moss, Guy Steinbach, Peter Moreau, Thomas Muratore, Fabio Linhart, Julia Durkan, Conor Vetter, Julius Miller, Benjamin Kurt Herold, Maternus Ziaeemehr, Abolfazl Pals, Matthijs Gruner, Theo Bischoff, Sebastian Krouglova, Anastasia N. Gao, Richard Lappalainen, Janne K. Mucsányi, Bálint Pei, Felix Schulz, Auguste Stefanidi, Zinovia Rodrigues, Pedro L.C. Schröder, Cornelius Zaid, Faried Abu Beck, Jonas Kapoor, Jaivardhan Greenberg, David S. Gonçalves, Pedro J. Macke, Jakob H. Machine Learning in Science University of Tübingen Germany Tübingen AI Center Germany TransferLab AppliedAI Institute for Europe Germany ML Colab Cluster ML in Science University of Tübingen Germany Google Research United States Helmholtz-Zentrum Dresden-Rossendorf Germany Université Paris-Saclay INRIA CEA Palaiseau France Robert Bosch GmbH Germany School of Informatics University of Edinburgh United Kingdom University of Amsterdam Netherlands Research and Innovation Center BMW Group Germany Institute for Applied Mathematics and Scientific Computing University of the Bundeswehr Munich Germany Aix Marseille INSERM INS France TU Darmstadt Hessian.AI Germany University Hospital Tübingen M3 Research Center Germany Faculty of Science KU Leuven B-3000 Belgium Imec Belgium Methods of Machine Learning University of Tübingen Germany Neuroscience Institute Carnegie Mellon University United States Université Grenoble Alpes INRIA CNRS Grenoble INP LJK France Hertie Institute for AI in Brain Health University of Tübingen Germany Institute of Coastal Systems - Analysis and Modeling Helmholtz AI Germany Departments of Computer Science Electrical Engineering KU Leuven Belgium Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-bas... 详细信息
来源: 评论
AI-based Fog and Edge Computing: A Systematic Review, Taxonomy and Future Directions
arXiv
收藏 引用
arXiv 2022年
作者: Iftikhar, Sundas Gill, Sukhpal Singh Song, Chenghao Xu, Minxian Aslanpour, Mohammad Sadegh Toosi, Adel N. Du, Junhui Wu, Huaming Ghosh, Shreya Chowdhury, Deepraj Golec, Muhammed Kumar, Mohit Abdelmoniem, Ahmed M. Cuadrado, Felix Varghese, Blesson Rana, Omer Dustdar, Schahram Uhlig, Steve School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom University of Kotli Azad Jammu & Kashmir Azad Kashmir Kotli Pakistan Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Software Systems and Cybersecurity Faculty of Information Technology Monash University Australia Csiro DATA61 Australia Center for Applied Mathematics Tianjin University Tianjin China The Pennsylvania State University PA United States Naya Raipur India Abdullah Gül University Kayseri Turkey Department of Information Technology National Institute of Technology Jalandhar India Spain School of Computer Science University of St Andrews United Kingdom School of Computer Science and Informatics Cardiff University Cardiff United Kingdom Distributed Systems Group Vienna University of Technology Vienna Austria
Resource management in computing is a very challenging problem that involves making sequential decisions. Resource limitations, resource heterogeneity, dynamic and diverse nature of workload, and the unpredictability ... 详细信息
来源: 评论
Generalized Sparse Matrix-Matrix Multiplication for Vector Engines and Graph Applications
Generalized Sparse Matrix-Matrix Multiplication for Vector E...
收藏 引用
IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)
作者: Jiayu Li Fugang Wang Takuya Araki Judy Qiu Intelligent Systems Engineering Indiana University Bloomington USA Data Science Research Laboratories NEC Kanagawa Japan
Generalized sparse matrix-matrix multiplication (SpGEMM) is a key primitive kernel for many high-performance graph algorithms as well as for machine learning and data analysis algorithms. Although many SpGEMM algorith... 详细信息
来源: 评论
Open-SBS: Smart Building Simulator
Open-SBS: Smart Building Simulator
收藏 引用
Information Technology (ACIT)
作者: Houssem Eddine Degha Fatima Zohra Laallam Okba Kazar Issam Khelfaoui Belkacem Athamena Zina Houhamdi Faculty of Sciences and Technology University of Ghardaia Ghardaia Algeria Artificial Intelligence and Information Technologies Laboratory Kasdi Merbah Ouargla University City Algeria Intelligent Computer Science Laboratory LINFI Biskra University Biskra Algeria Department of Information Systems and Security College of Information Technology United Arab Emirate University United Arab Emirates School of Insurance and Economics University of International Business and Economics Beijing China College of Business Al Ain University Al Ain UAE College of engineering Al Ain University Al Ain UAE
With the rise of machine learning and deep learning techniques in recent years, a representative dataset has become an inspiring source of prediction and knowledge extraction. Furthermore, ambient intelligence environ... 详细信息
来源: 评论
OLSR+: A new routing method based on fuzzy logic in flying ad-hoc networks (FANETs)
收藏 引用
Vehicular Communications 2022年 36卷
作者: Rahmani, Amir Masoud Ali, Saqib Yousefpoor, Efat Yousefpoor, Mohammad Sadegh Javaheri, Danial Lalbakhsh, Pooia Hassan Ahmed, Omed Hosseinzadeh, Mehdi Lee, Sang-Woong Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Information Systems College of Economics and Political Science Sultan Qaboos University Al Khoudh Muscat Oman Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran Department of Computer Engineering Chosun University Gwangju 61452 South Korea Department of Data Science and Artificial Intelligence Faculty of Information Technology Monash University Clayton 3800 VIC Australia Department of Information Technology University of Human Development Sulaymaniyah Iraq Pattern Recognition and Machine Learning Lab Gachon University 1342 Seongnamdaero Sujeonggu Seongnam 13120 South Korea
Flying ad-hoc networks (FANETs) have many applications in military, industrial and agricultural areas. Due to specific features of FANETs, such as high-speed nodes, low density of nodes in the network, and rapid chang... 详细信息
来源: 评论
Learn to predict sets using feed-forward neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Rezatofighi, Seyed Hamid Zhu, Alan Tianyu Kaskman, Roman Motlagh, Farbod T. Shi, Javen Qinfeng Milan, Anton Cremers, Daniel Leal-Taixé, Laura Reid, Ian The Department of Data Science and AI Faculty of Information Technology Monash University Melbourne Australia Department of Electrical and Computer Systems Engineering Monash University Melbourne Australia The School of Computer Science The university of Adelaide Australia Amazon Technical University of Munich Germany
This paper addresses the task of set prediction using deep feed-forward neural networks. A set is a collection of elements which is invariant under permutation and the size of a set is not fixed in advance. Many real-... 详细信息
来源: 评论
Correction: PixCUE: Joint Uncertainty Estimation and Image Reconstruction in MRI using Deep Pixel Classification
收藏 引用
Journal of imaging informatics in medicine 2025年 2025 Feb 4页
作者: Mevan Ekanayake Kamlesh Pawar Zhifeng Chen Gary Egan Zhaolin Chen Monash Biomedical Imaging Monash University Clayton VIC 3800 Australia. Department of Electrical and Computer Systems Engineering Monash University Clayton VIC 3800 Australia. Department of Data Science and AI Faculty of IT Monash University Clayton VIC 3800 Australia. School of Psychological Sciences Monash University Clayton VIC 3800 Australia. Monash Biomedical Imaging Monash University Clayton VIC 3800 Australia. zhaolin.chen@monash.edu. Department of Data Science and AI Faculty of IT Monash University Clayton VIC 3800 Australia. zhaolin.chen@monash.edu.
来源: 评论
Efficient Recursive Implementation of Spatial-Temporal Gaussian Process Regression
Efficient Recursive Implementation of Spatial-Temporal Gauss...
收藏 引用
Chinese Control Conference (CCC)
作者: Junpeng Zhang Ye Kuang Tianshi Chen Xiaochen Lu Feng Yin Renxin Zhong School of Science and Engineering and Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen Shenzhen P. R. China Guangzhou Yunchuang Data Science and Technology Co. Ltd. Guangzhou P. R. China School of Intelligent Systems Engineering Sun Yat-sen University Guangzhou P. R. China
The current implementation of the spatial-temporal Gaussian process regression has computational complexity O(NM 3 ), where N and M are the number of temporal and spatial data, respectively, and thus can only be appli... 详细信息
来源: 评论