Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
This paper presents a novel approach known as Neutrosophic Fuzzy Power Management (NFPM) aimed at addressing the critical challenge of uncertain energy availability in Energy Harvesting Sensor Networks (EHWSNs). The m...
详细信息
We utilize the unified approach and He’s semi-inverse method to derive novel stochastic optical solutions for the (2 + 1)-dimensional nonlinear Schrödinger equation (2D-NLSE) in the context of Itôcalculus. ...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both th...
详细信息
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both the effective management and early detection of this disease. Feature selection (FS) methods are essential for identifying the most impactful features to improve breast cancer diagnosis. These methods reduce data dimensionality, eliminate irrelevant information, enhance learning accuracy, and improve the comprehensibility of results. However, the increasing complexity and dimensionality of cancer data pose substantial challenges to many existing FS methods, thereby reducing their efficiency and effectiveness. To overcome these challenges, numerous studies have demonstrated the success of nature-inspired optimization (NIO) algorithms across various domains. These algorithms excel in mimicking natural processes and efficiently solving complex optimization problems. Building on these advancements, we propose an innovative approach that combines powerful feature selection methods based on NIO techniques with a soft voting classifier. The NIO techniques employed include the Genetic Algorithm, Cuckoo Search, Salp Swarm, Jaya, Flower Pollination, Whale Optimization, Sine Cosine, Harris Hawks, and Grey Wolf Optimization algorithms. The Soft Voting Classifier integrates various machine learning models, including Support Vector Machines, Gaussian Naive Bayes, Logistic Regression, Decision Tree, and Gradient Boosting. These are used to improve the effectiveness and accuracy of breast cancer diagnosis. The proposed approach has been empirically evaluated using a variety of evaluation measures, such as F1 score, precision, recall, accuracy and Area Under the Curve (AUC), for performance comparison with individual machine learning techniques. The results demonstrate that the soft-voting ensemble technique, particularly when combined with feature selection based on the Jaya
In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning ...
详细信息
Hearing and Speech impairment can be congenital or *** and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their ***,the development of automated assistive learning tools within the educational field has empowered disabled students to pursue higher education in any field of *** learning devices enable students to access institutional resources and facilities *** proposed assistive learning and communication tool allows hearing and speech-impaired students to interact productively with their teachers and *** tool converts the audio signals into sign language videos for the speech and hearing-impaired to follow and converts the sign language to text format for the teachers to *** educational tool for the speech and hearing-impaired is implemented by customized deep learning models such as Convolution neural networks(CNN),Residual neural Networks(ResNet),and stacked Long short-term memory(LSTM)network *** assistive learning tool is a novel framework that interprets the static and dynamic gesture actions in American Sign Language(ASL).Such communicative tools empower the speech and hearing impaired to communicate effectively in a classroom environment and foster *** deep learning models were developed and experimentally evaluated with the standard performance *** model exhibits an accuracy of 99.7% for all static gesture classification and 99% for specific vocabulary of gesture action *** two-way communicative and educational tool encourages social inclusion and a promising career for disabled students.
Predicting haze is crucial in controlling air pollution to reduce its impact, especially on human health. Accurate prediction of extreme values is vital to raising public awareness of this issue and better understandi...
详细信息
Task assignment policies play a central role in many online applications, where service requests or tasks arrive over time and are distributed across parallel servers in a data center or cloud computing platform. The ...
详细信息
With the enormous amount of data produced daily, cloud and fog computing presented efficient and effective models for real-time data exchange. Nevertheless, this technology came with a cost at the security level, wher...
详细信息
暂无评论