咨询与建议

限定检索结果

文献类型

  • 400 篇 会议
  • 121 篇 期刊文献

馆藏范围

  • 521 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 296 篇 工学
    • 151 篇 计算机科学与技术...
    • 131 篇 软件工程
    • 124 篇 控制科学与工程
    • 83 篇 机械工程
    • 52 篇 信息与通信工程
    • 46 篇 仪器科学与技术
    • 32 篇 生物医学工程(可授...
    • 31 篇 光学工程
    • 28 篇 电气工程
    • 26 篇 生物工程
    • 19 篇 电子科学与技术(可...
    • 14 篇 力学(可授工学、理...
    • 12 篇 土木工程
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
  • 122 篇 理学
    • 59 篇 数学
    • 51 篇 物理学
    • 22 篇 生物学
    • 21 篇 统计学(可授理学、...
    • 11 篇 系统科学
  • 67 篇 管理学
    • 48 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 30 篇 医学
    • 23 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 教育学
  • 3 篇 法学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 31 篇 feature extracti...
  • 23 篇 training
  • 21 篇 robots
  • 21 篇 accuracy
  • 18 篇 semantics
  • 17 篇 cameras
  • 13 篇 real-time system...
  • 12 篇 robustness
  • 11 篇 force
  • 11 篇 optimization
  • 11 篇 robot sensing sy...
  • 11 篇 visualization
  • 11 篇 trajectory
  • 11 篇 sensors
  • 10 篇 three-dimensiona...
  • 10 篇 convolution
  • 10 篇 mathematical mod...
  • 9 篇 vehicle dynamics
  • 9 篇 object detection
  • 9 篇 image segmentati...

机构

  • 275 篇 faculty of robot...
  • 86 篇 college of infor...
  • 59 篇 northeastern uni...
  • 20 篇 multi-robot syst...
  • 18 篇 graduate school ...
  • 16 篇 state key labora...
  • 14 篇 foshan graduate ...
  • 13 篇 faculty of engin...
  • 12 篇 the faculty of r...
  • 12 篇 department of mo...
  • 11 篇 siasun robot & a...
  • 11 篇 school of creati...
  • 10 篇 liaoning disable...
  • 9 篇 faculty of engin...
  • 8 篇 shenyang institu...
  • 8 篇 key laboratory o...
  • 7 篇 global robot aca...
  • 7 篇 national frontie...
  • 7 篇 faculty of scien...
  • 6 篇 faculty of engin...

作者

  • 58 篇 chengdong wu
  • 38 篇 fei wang
  • 27 篇 fang zheng
  • 22 篇 xiaosheng yu
  • 22 篇 wang fei
  • 20 篇 omar m. shehata
  • 17 篇 zheng fang
  • 17 篇 zixi jia
  • 15 篇 wu chengdong
  • 15 篇 jianning chi
  • 14 篇 cui yubo
  • 14 篇 lijin fang
  • 14 篇 yu xiaosheng
  • 14 篇 elsayed i. morga...
  • 12 篇 shiguang wen
  • 12 篇 yang jiang
  • 11 篇 li zhiheng
  • 11 篇 chu hao
  • 10 篇 fang lijin
  • 10 篇 zhang yunzhou

语言

  • 499 篇 英文
  • 19 篇 其他
  • 3 篇 中文
  • 1 篇 日文
检索条件"机构=Faculty of Robot Science and Engineering"
521 条 记 录,以下是71-80 订阅
排序:
Fault Diagnosis of Harmonic Reducers Based On a FDG-Resnet Joint Methodology
Fault Diagnosis of Harmonic Reducers Based On a FDG-Resnet J...
收藏 引用
2023 International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence, ICSMD 2023
作者: Lv, Jing Long, Zhuo Wang, Juan Ma, Xiaoguang College of Electronics and Information Engineering Heilongjiang University of Science and Technology Harbin China Engineering and Also with the Foshan Graduate School Northeastern University Northeastern University Faculty of Robot Science Foshan China
Harmonic reducers(HRs) are widely used in various industrial fields due to its advantages of high precision, high transmission efficiency and compact structure. However, the vibration signal of the HRs are complex, ma... 详细信息
来源: 评论
Efficient Attentional Underwater Image Enhancement Generative Adversarial Network
Efficient Attentional Underwater Image Enhancement Generativ...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Haopeng Zhang Hongli Xu Xiaosheng Yu Junxiang Wang Chengdong Wu Faculty of Robot Science and Engineering Northeastern University Shenyang China
In the domain of underwater imaging, the attenuation of light, varying light conditions, and suspended particles often degrade image clarity, resulting in a loss of visual information and color distortion. The propose... 详细信息
来源: 评论
Attention-Based Generative Grasping Deformable Convolutional Neural Network
Attention-Based Generative Grasping Deformable Convolutional...
收藏 引用
International Conference on robotics and Automation engineering (ICRAE)
作者: Kang-Xiong Qin Ru-Jie Fu Sheng-Wei Zhang Yang Jiang Faculty of Robot Science and Engineering Northeastern University Shenyang China
Traditional generative grasping convolutional neural network suffers from insufficient feature selection capability and limited adaptability to complex geometric transformations in unstructured environments. To addres... 详细信息
来源: 评论
Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
arXiv
收藏 引用
arXiv 2025年
作者: Chi, Jianning Li, Zelan Lin, Geng Sun, MingYang Yu, Xiaosheng Faculty of Robot Science and Engineering Northeastern University Shenyang110169 China
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that simply follow topolog... 详细信息
来源: 评论
Collaborative Path Planning for Multiple Autonomous Underwater Vehicles Based on Improved Particle Swarm Optimization Algorithm
Collaborative Path Planning for Multiple Autonomous Underwat...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Mian Wang Hongli Xu Faculty of Robot Science and Engineering Northeastern University Shenyang China
To solve the collaborative path planning problem of multiple autonomous underwater vehicles in complex environments, an improved particle swarm optimization algorithm is proposed to address the problems of traditional... 详细信息
来源: 评论
Cross-level Diffusion-based Affinity Learning for Unsupervised Salient Object Detection
Cross-level Diffusion-based Affinity Learning for Unsupervis...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Pengfei Lyu Xiaosheng Yu Chengdong Wu Faculty of Robot Science and Engineering Northeastern University Shenyang China
Numerous bottom-up salient object detection (SOD) methods rely on local similarity (affinity) to construct, which ignores the relationships among non-adjacent regions. To solve this problem, we propose a novel framewo... 详细信息
来源: 评论
Observation Time Difference: an Online Dynamic Objects Removal Method for Ground Vehicles
Observation Time Difference: an Online Dynamic Objects Remov...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Rongguang Wu Chenglin Pang Xuankang Wu Zheng Fang Faculty of Robot Science and Engineering Northeastern University Shenyang China
In the process of urban environment mapping, the sequential accumulations of dynamic objects will leave a large number of traces in the map. These traces will usually have bad influences on the localization accuracy a... 详细信息
来源: 评论
FlowTrack: Point-level Flow Network for 3D Single Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Li, Shuo Cui, Yubo Li, Zhiheng Fang, Zheng Faculty of Robot Science and Engineering Northeastern University Shenyang China
3D single object tracking (SOT) is a crucial task in fields of mobile robotics and autonomous driving. Traditional motion-based approaches achieve target tracking by estimating the relative movement of target between ... 详细信息
来源: 评论
Design and Validation of Pipeline Inspection robot based on Panoramic Vision
Design and Validation of Pipeline Inspection Robot based on ...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Zixi Jia Shengming Li Bingze Li Faculty of Robot Science and Engineering Northeastern University Shenyang China
Pipeline-type workpieces are prevalent in industrial production. However, manually inspecting the inner walls is an inefficient quality control activity that may pose safety risks to inspection personnel, especially f... 详细信息
来源: 评论
Slot-Based Object-Centric Reinforcement Learning Algorithm
Slot-Based Object-Centric Reinforcement Learning Algorithm
收藏 引用
IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems
作者: Chao Chen Fei Wang Xinyao Wang Faculty of Robot Science and Engineering Northeastern University China Faculty of Robot Science and Engineering Northeastern University Shen Yang LiaoNing China Bussiness School Liaoning University
With the development of reinforcement learning algorithms, it has become capable of handling a wide variety of complex tasks in simulated environments. However, applying reinforcement learning algorithms to real-world... 详细信息
来源: 评论