咨询与建议

限定检索结果

文献类型

  • 408 篇 会议
  • 119 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 529 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 149 篇 计算机科学与技术...
    • 130 篇 软件工程
    • 121 篇 控制科学与工程
    • 83 篇 机械工程
    • 52 篇 信息与通信工程
    • 46 篇 仪器科学与技术
    • 31 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 28 篇 电气工程
    • 25 篇 生物工程
    • 17 篇 电子科学与技术(可...
    • 14 篇 力学(可授工学、理...
    • 13 篇 土木工程
    • 11 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
  • 122 篇 理学
    • 60 篇 数学
    • 50 篇 物理学
    • 22 篇 生物学
    • 21 篇 统计学(可授理学、...
    • 11 篇 系统科学
  • 67 篇 管理学
    • 48 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 30 篇 医学
    • 23 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 教育学
  • 3 篇 法学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 32 篇 feature extracti...
  • 27 篇 training
  • 22 篇 accuracy
  • 21 篇 robots
  • 18 篇 semantics
  • 17 篇 cameras
  • 14 篇 real-time system...
  • 13 篇 robustness
  • 12 篇 three-dimensiona...
  • 11 篇 force
  • 11 篇 optimization
  • 11 篇 computational mo...
  • 11 篇 robot sensing sy...
  • 11 篇 visualization
  • 11 篇 trajectory
  • 11 篇 sensors
  • 10 篇 convolution
  • 10 篇 mathematical mod...
  • 10 篇 adaptation model...
  • 9 篇 vehicle dynamics

机构

  • 282 篇 faculty of robot...
  • 86 篇 college of infor...
  • 58 篇 northeastern uni...
  • 22 篇 multi-robot syst...
  • 18 篇 graduate school ...
  • 16 篇 state key labora...
  • 14 篇 foshan graduate ...
  • 13 篇 faculty of engin...
  • 12 篇 the faculty of r...
  • 12 篇 department of mo...
  • 11 篇 siasun robot & a...
  • 11 篇 school of creati...
  • 10 篇 liaoning disable...
  • 9 篇 faculty of engin...
  • 8 篇 shenyang institu...
  • 8 篇 key laboratory o...
  • 7 篇 global robot aca...
  • 7 篇 national frontie...
  • 7 篇 faculty of scien...
  • 6 篇 faculty of engin...

作者

  • 60 篇 chengdong wu
  • 38 篇 fei wang
  • 29 篇 fang zheng
  • 23 篇 omar m. shehata
  • 22 篇 xiaosheng yu
  • 22 篇 wang fei
  • 17 篇 zheng fang
  • 17 篇 zixi jia
  • 16 篇 jianning chi
  • 15 篇 cui yubo
  • 15 篇 wu chengdong
  • 14 篇 lijin fang
  • 14 篇 yu xiaosheng
  • 14 篇 elsayed i. morga...
  • 12 篇 shiguang wen
  • 12 篇 li zhiheng
  • 12 篇 yang jiang
  • 11 篇 chu hao
  • 10 篇 junyi wang
  • 10 篇 zhang yunzhou

语言

  • 455 篇 英文
  • 71 篇 其他
  • 3 篇 中文
  • 1 篇 日文
检索条件"机构=Faculty of Robot Science and engineering"
529 条 记 录,以下是1-10 订阅
排序:
Hourglass-GCN for 3D Human Pose Estimation Using Skeleton Structure and View Correlation
收藏 引用
Computers, Materials & Continua 2025年 第1期82卷 173-191页
作者: Ange Chen Chengdong Wu Chuanjiang Leng Faculty of Robot Science and Engineering Northeastern UniversityShenyang110169China
Previous multi-view 3D human pose estimation methods neither correlate different human joints in each view nor model learnable correlations between the same joints in different views explicitly,meaning that skeleton s... 详细信息
来源: 评论
Finite-Time Event-Triggered Containment Maneuvering of Marine Surface Vehicles With Tracking Error Constraints: Theory and Experiment
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-11页
作者: Feng, Yuxi Wang, Hao Fu, Jun Faculty of Robot Science and Engineering Northeastern University Shenyang China
In this article, a novel class of containment maneuvering controllers is developed for a fleet of marine surface vehicles (MSVs) capable of tracking a parameterized path within finite time. Besides, the along-track er... 详细信息
来源: 评论
HyGFNet: Hybrid Geometry-Flow Learning Network for 3D Single Object Tracking
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 第10期9卷 1-12页
作者: Cui, Yubo Fang, Zheng Li, Zhiheng Li, Shuo Lin, Yu Faculty of Robot Science and Engineering Northeastern University Shenyang China
3D single object tracking (SOT) which attempts to accurately locate the target object in the current frame, has made significant advancements over past years. However, most previous works built upon the Siamese archit... 详细信息
来源: 评论
Brain Cognition Mechanism-Inspired Hierarchical Navigation Method for Mobile robots
收藏 引用
Journal of Bionic engineering 2024年 第2期21卷 852-865页
作者: Qiang Zou Chengdong Wu Ming Cong Dong Liu Faculty of Robot Science and Engineering Northeastern UniversityShenyang110819China School of Mechanical Engineering Dalian University of TechnologyDalian116024China
Autonomous navigation is a fundamental problem in *** methods generally build point cloud map or dense feature map in perceptual space;due to lack of cognition and memory formation mechanism,traditional methods exist ... 详细信息
来源: 评论
Skeleton-Based Action Recognition with Adaptive Connections and Motion Modeling  6
Skeleton-Based Action Recognition with Adaptive Connections ...
收藏 引用
6th International Conference on Industrial Artificial Intelligence, IAI 2024
作者: Geng, Qizhao Zheng, Chao Li, Ziao Wang, Junyi Northeastern University Faculty of Robot Science and Engineering Shenyang China Northeastern University Faculty of Robot Science and Engineering and Foshan Graduate School of Innovation China
In the field of skeleton-based action recognition, ST-GCN has gained popularity because of its strong capability to model graph data and its effective use of prior knowledge regarding human joint connections. However,... 详细信息
来源: 评论
Leveraging Frequency and Spatial Domain Information for Underwater Image Restoration
Leveraging Frequency and Spatial Domain Information for Unde...
收藏 引用
2024 International Conference on Intelligent Systems and robotics, CISR 2024
作者: Zhang, Haopeng Xu, Hongli Yu, Xiaosheng Zhang, Xiangyue Wu, Chengdong Faculty of Robot Science and Engineering Northeastern University Shenyang China
Underwater image restoration is pivotal for enhancing the visual perception of underwater robots by improving image visibility and quality. Typically, underwater images are compromised by color distortion, low contras... 详细信息
来源: 评论
Middle Code Prediction: Enhancing Code Generation for Uncommon Programming Languages in robotics  16
Middle Code Prediction: Enhancing Code Generation for Uncomm...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Jia, Zixi Gao, Hongbin Li, Hexiao Faculty of Robot Science and Engineering Northeastern University Shenyang China
Generating executable code through natural language instructions to drive robotic movements is considered a crucial step towards achieving embodied intelligence. However, in the robotics domain, the scarcity of progra... 详细信息
来源: 评论
DCoT: Dual Chain-of-Thought Prompting for Large Multimodal Models  16
DCoT: Dual Chain-of-Thought Prompting for Large Multimodal M...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Jia, Zixi Liu, Jiqiang Li, Hexiao Liu, Qinghua Gao, Hongbin Faculty of Robot Science and Engineering Northeastern University Shenyang China
Inference augmentation techniques such as Chain-of-Thought have already made their mark in Large Language Models (LLMs). However, transferring these advances to Large Multimodal Models (LMMs) presents greater challeng... 详细信息
来源: 评论
Attention-Based Generative Grasping Deformable Convolutional Neural Network  9
Attention-Based Generative Grasping Deformable Convolutional...
收藏 引用
9th International Conference on robotics and Automation engineering, ICRAE 2024
作者: Qin, Kang-Xiong Fu, Ru-Jie Zhang, Sheng-Wei Jiang, Yang Northeastern University Faculty of Robot Science and Engineering Shenyang China
Traditional generative grasping convolutional neural network suffers from insufficient feature selection capability and limited adaptability to complex geometric transformations in unstructured environments. To addres... 详细信息
来源: 评论
Slot-Based Object-Centric Reinforcement Learning Algorithm  14
Slot-Based Object-Centric Reinforcement Learning Algorithm
收藏 引用
14th IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, CYBER 2024
作者: Chen, Chao Wang, Fei Wang, Xinyao Northeastern University Faculty of Robot Science and Engineering China Northeastern University Faculty of Robot Science and Engineering Liaoning Shen Yang China Bussiness School Liaoning University China
With the development of reinforcement learning algorithms, it has become capable of handling a wide variety of complex tasks in simulated environments. However, applying reinforcement learning algorithms to real-world... 详细信息
来源: 评论