Facial expressions play a vital role in human communication, enabling us to convey a wide range of emotions such as happiness, anger, and sadness. Human-computer Interaction (HCI) is a rapidly growing and highly appea...
详细信息
The entire world encounters a significant problem which is food availability. 'Zero-hunger' is the second Sustainable Development Goal (SDG) of the goals established by the United Nations in 2015. With the inc...
详细信息
Educational Data Mining (EDM) is an emerging field dedicated to discovering and analyzing meaningful patterns in educational datasets. This paper provides a comparative analysis of seven machine-learning classifiers: ...
详细信息
This study integrates satellite imagery, machine learning, and explainable AI to enhance the predictive accuracy and interpretability of the Human Development Index (HDI) in East Java, Indonesia. Using advanced models...
详细信息
In terms of security and privacy,mobile ad-hoc network(MANET)continues to be in demand for additional debate and *** more MANET applications become data-oriented,implementing a secure and reliable data transfer protoc...
详细信息
In terms of security and privacy,mobile ad-hoc network(MANET)continues to be in demand for additional debate and *** more MANET applications become data-oriented,implementing a secure and reliable data transfer protocol becomes a major concern in the ***,MANET’s lack of infrastructure,unpredictable topology,and restricted resources,as well as the lack of a previously permitted trust relationship among connected nodes,contribute to the attack detection burden.A novel detection approach is presented in this paper to classify passive and active black-hole *** proposed approach is based on the dipper throated optimization(DTO)algorithm,which presents a plausible path out of multiple paths for statistics transmission to boost MANETs’quality of service.A group of selected packet features will then be weighed by the DTO-based multi-layer perceptron(DTO-MLP),and these features are collected from nodes using the Low Energy Adaptive Clustering Hierarchical(LEACH)clustering *** is a powerful classifier and the DTO weight optimization method has a significant impact on improving the classification process by strengthening the weights of key features while suppressing the weights ofminor *** hybridmethod is primarily designed to combat active black-hole *** the LEACH clustering phase,however,can also detect passive black-hole *** effect of mobility variation on detection error and routing overhead is explored and evaluated using the suggested *** diverse mobility situations,the results demonstrate up to 97%detection accuracy and faster execution ***,the suggested approach uses an adjustable threshold value to make a correct conclusion regarding whether a node is malicious or benign.
This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, ...
详细信息
This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, MotionSense, and PAMAP2—to develop a generalized MLP model for classifying six human activities. Performance analysis of the fused model for each dataset reveals accuracy rates of 95.83 for WISDM, 97 for DaLiAc, 94.65 for MotionSense, and 98.54 for PAMAP2. A comparative evaluation was conducted between the fused MLP model and the individual dataset models, with the latter tested on separate validation sets. The results indicate that the MLP model, trained on the fused dataset, exhibits superior performance relative to the models trained on individual datasets. This finding suggests that multisource data fusion significantly enhances the generalization and accuracy of HAR systems. The improved performance underscores the potential of integrating diverse data sources to create more robust and comprehensive models for activity recognition.
Diabetic retinopathy (DR) is an infection that bases eternal visualization loss in patients with diabetes mellitus. With DR, the glucose level in the blood increases, as well as its viscosity, this results in fluid le...
详细信息
Diabetic retinopathy (DR) is an infection that bases eternal visualization loss in patients with diabetes mellitus. With DR, the glucose level in the blood increases, as well as its viscosity, this results in fluid leakage into surrounding tissues in the retina. In other words, DR represents the pathology of capillaries and venules in the retina with leakage effects, being the main acute retinal disorder caused by diabetes. Many DR detection methods have been previously discussed by different researchers;however, accurate DR detection with a reduced execution time has not been achieved by existing methods. The proposed method, the Shape Adaptive box linear filtering-based Gradient Deep Belief network classifier (SAGDEB) Model, is performed to enhance the accuracy of DR detection. The objective of the SAGDEB Model is to perform an efficient DR identification with a higher accuracy and lower execution time. This model comprises three phases: pre-processing, feature extraction, and classification. The shape adaptive box linear filtering image pre-processing is carried out to reduce the image noise without removing significant parts of image content. Then, an isomap geometric feature extraction is performed to compute features of different natures, like shape, texture, and color, from the pre-processed images. After that, the Adaptive gradient Tversky Deep belief network classifier is to perform classification. The deep belief network is probabilistic and generative graphical model that consists of multiple layers such as one input unit, three hidden units, and one output unit. The extracted image featuresare considered in the input layer and these images are sent to hidden layers. Tversky similarity index is applied in hidden layer 1 to analyze the extracted features with testing features. Regarding the similarity value, the sigmoid activation function is determined in hidden layer 2 so different levels of DR can be identified. Finally, the adaptive gradient method is
The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT *** learning(DL)-based intrusion detection(ID)has emerged...
详细信息
The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT *** learning(DL)-based intrusion detection(ID)has emerged as a vital method for protecting IoT *** rectify the deficiencies of current detection methodologies,we proposed and developed an IoT cyberattacks detection system(IoT-CDS)based on DL models for detecting bot attacks in IoT *** DL models—long short-term memory(LSTM),gated recurrent units(GRUs),and convolutional neural network-LSTM(CNN-LSTM)were suggested to detect and classify IoT *** BoT-IoT dataset was used to examine the proposed IoT-CDS system,and the dataset includes six attacks with normal *** experiments conducted on the BoT-IoT network dataset reveal that the LSTM model attained an impressive accuracy rate of 99.99%.Compared with other internal and external methods using the same dataset,it is observed that the LSTM model achieved higher accuracy *** are more efficient than GRUs and CNN-LSTMs in real-time performance and resource efficiency for cyberattack *** method,without feature selection,demonstrates advantages in training time and detection ***,the proposed approach can be extended to improve the security of various IoT applications,representing a significant contribution to IoT security.
Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,*** biometric modalities are mostly used in recognition ...
详细信息
Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,*** biometric modalities are mostly used in recognition tasks separately as in unimodal systems,or jointly with two or more as in multimodal ***,multimodal systems can usually enhance the recognition performance over unimodal systems by integrating the biometric data of multiple modalities at different fusion *** this enhancement,in real-life applications some factors degrade multimodal systems’performance,such as occlusion,face poses,and noise in voice *** this paper,we propose two algorithms that effectively apply dynamic fusion at feature level based on the data quality of multimodal *** proposed algorithms attempt to minimize the negative influence of confusing and low-quality features by either exclusion or weight reduction to achieve better recognition *** proposed dynamic fusion was achieved using face and voice biometrics,where face features were extracted using principal component analysis(PCA),and Gabor filters separately,whilst voice features were extracted using Mel-Frequency Cepstral Coefficients(MFCCs).Here,the facial data quality assessment of face images is mainly based on the existence of occlusion,whereas the assessment of voice data quality is substantially based on the calculation of signal to noise ratio(SNR)as per the existence of *** evaluate the performance of the proposed algorithms,several experiments were conducted using two combinations of three different databases,AR database,and the extended Yale Face Database B for face images,in addition to VOiCES database for voice *** obtained results show that both proposed dynamic fusion algorithms attain improved performance and offer more advantages in identification and verification over not only the standard unimodal algorithms but also the multimodal algorithms using stan
With the advancement of deep learning technology, researchers have begun employing deep neural network models such as LSTM, MLP, CNN, and GRU to tackle nonlinear prediction problems in stock markets. This study harnes...
详细信息
暂无评论