Multipath and non-line-of-sight (NLOS) signals are a major concern for the application of GNSS positioning in challenging environments. The positioning accuracy degradation, due to these reflected signals, hinders the...
详细信息
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization *** past decade has also witnessed their fast progress to solve a cl...
详细信息
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization *** past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems(HEPs).The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer ***,it is hard to traverse the huge search space within reasonable resource as problem dimension *** evolutionary algorithms(EAs)tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory *** reduce such evaluations,many novel surrogate-assisted algorithms emerge to cope with HEPs in recent *** there lacks a thorough review of the state of the art in this specific and important *** paper provides a comprehensive survey of these evolutionary algorithms for *** start with a brief introduction to the research status and the basic concepts of ***,we present surrogate-assisted evolutionary algorithms for HEPs from four main *** also give comparative results of some representative algorithms and application ***,we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs.
This paper investigates algorithms for distributing Internet of Things sensors within the Wildland-Urban Interface to enhance early wildland fire detection. Using geospatial data analysis and a validated wildland fire...
详细信息
The recent development of channel technology has promised to reduce the transaction verification time in blockchain *** transactions are transmitted through the channels created by nodes,the nodes need to cooperate wi...
详细信息
The recent development of channel technology has promised to reduce the transaction verification time in blockchain *** transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each *** one party refuses to do so,the channel is unstable.A stable channel is thus *** nodes may show uncooperative behavior,they may have a negative impact on the stability of such *** order to address this issue,this work proposes a dynamic evolutionary game model based on node *** model considers various defense strategies'cost and attack success ratio under *** can dynamically adjust their strategies according to the behavior of attackers to achieve their effective *** equilibrium stability of the proposed model can be *** proposed model can be applied to general channel *** is compared with two state-of-the-art blockchain channels:Lightning network and Spirit *** experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable *** its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.
The importance of accurate flood forecasting is rising as climate change makes it more difficult to predict when and where floods will occur. Flood predictions use supervised machine learning models, and flood levels ...
详细信息
Management and information systems are considered two major disciplines that have to be combined to benefit from knowledge for rational decision-making which means strict procedures utilizing objective knowledge and l...
详细信息
The nonlinear transformation used in reservoir computing can be effectively replaced by nonlinear vector autoregression (NVAR) for data prediction. In such a method, also known as next generation reservoir computing (...
详细信息
This study focuses on behavior patterns, which are characteristic actions common to groups or communities, to promote intercultural understanding. Understanding greeting gestures is crucial for comprehending social re...
详细信息
Colorectal cancer (CRC) is considered one of the most deadly cancer types nowadays. It is rapidly increasing due to many factors, such as unhealthy lifestyles, water and food pollution, aging, and medical diagnosis de...
详细信息
Automatic person identification (API) using human biometrics is essential and highly demanded compared to traditional API methods, where a person is automatically identified using his/her distinct characteristics incl...
详细信息
Automatic person identification (API) using human biometrics is essential and highly demanded compared to traditional API methods, where a person is automatically identified using his/her distinct characteristics including speech, fingerprint, iris, handwritten signatures, and others. The fusion of more than one human biometric produces bimodal and multimodal API systems that normally outperform single modality systems. This paper presents our work towards fusing speech and handwritten signatures for developing a bimodal API system, where fusion was conducted at the decision level due to the differences in the type and format of the features extracted. A data set is created that contains recordings of usernames and handwritten signatures of 100 persons (50 males and 50 females), where each person recorded his/her username 30 times and provided his/her handwritten signature 30 times. Consequently, a total of 3000 utterances and 3000 handwritten signatures were collected. The speech API used Mel-Frequency Cepstral Coefficients (MFCC) technique for features extraction and Vector Quantization (VQ) for features training and classification. On the other hand, the handwritten signatures API used global features for reflecting the structure of the hand signature image such as image area, pure height, pure width and signature height and the Multi-Layer Perceptron (MLP) architecture of Artificial Neural Network for features training and classification. Once the best matches for both the speech and the handwritten signatures API are produced, the fusion process takes place at decision level. It computes the difference between the two best matches for each modality and selects the modality of the maximum difference. Based on our experimental results, the bimodal API obtained an average recognition rate of 96.40%, whereas the speech API and the handwritten signatures API obtained average recognition rates of 92.60% and 75.20%, respectively. Therefore, the bimodal API system is a
暂无评论