Corrosion poses a significant challenge in industries due to material degradation and high maintenance costs, making effective inhibitors essential. Recent studies suggest expired pharmaceuticals as alternative corros...
详细信息
It has been widely proven that Augmented Reality (AR) brings numerous benefits in learning experiences, including enhancing learning outcomes and motivation. However, not many studies investigate how different forms o...
详细信息
This study introduces the System for Calculating Open Data Re-identification Risk (SCORR), a framework for quantifying privacy risks in tabular datasets. SCORR extends conventional metrics such as k-anonymity, l-diver...
详细信息
This study introduces the System for Calculating Open Data Re-identification Risk (SCORR), a framework for quantifying privacy risks in tabular datasets. SCORR extends conventional metrics such as k-anonymity, l-diversity, and t-closeness with novel extended metrics, including uniqueness-only risk, uniformity-only risk, correlation-only risk, and Markov Model risk, to identify a broader range of re-identification threats. It efficiently analyses event-level and person-level datasets with categorical and numerical attributes. Experimental evaluations were conducted on three publicly available datasets: OULAD, HID, and Adult, across multiple anonymisation levels. The results indicate that higher anonymisation levels do not always proportionally enhance privacy. While stronger generalisation improves k-anonymity, l-diversity and t-closeness vary significantly across datasets. Uniqueness-only and uniformity-only risk decreased with anonymisation, whereas correlation-only risk remained high. Meanwhile, Markov Model risk consistently remained high, indicating little to no improvement regardless of the anonymisation level. Scalability analysis revealed that conventional metrics and Uniqueness-only risk incurred minimal computational overhead, remaining independent of dataset size. However, correlation-only and uniformity-only risk required significantly more processing time, while Markov Model risk incurred the highest computational cost. Despite this, all metrics remained unaffected by the number of quasi-identifiers, except t-closeness, which scaled linearly beyond a certain threshold. A usability evaluation comparing SCORR with the freely available ARX Tool showed that SCORR reduced the number of user interactions required for risk analysis by 59.38%, offering a more streamlined and efficient process. These results confirm SCORR’s effectiveness in helping data custodians balance privacy protection and data utility, advancing privacy risk assessment beyond existing tools
The integration of augmented reality (AR) into educational environments will depend on its perceived effectiveness in enhancing teaching practices and the attitudes toward the use of this technology. Therefore, the ma...
详细信息
Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards ...
详细信息
With the rapid development of emerging services such as cellular vehicle-to-everything and immersive video service, network connections have further evolved from tangible physical connections to intangible virtual con...
详细信息
This paper aims to delve into the development of EduGym, an educational microlearning game specifically designed for mobile platforms. The discussion highlights the implementation and integration of Open Educational R...
详细信息
Sound event detection and classification present significant challenges, particularly in noisy environments with multiple overlapping sources. This paper introduces an innovative architecture for multiple sound event ...
详细信息
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional meth...
详细信息
The evolution of edge computing has advanced the accessibility of E-health recommendation services, encompassing areas such as medical consultations, prescription guidance, and diagnostic assessments. Traditional methodologies predominantly utilize centralized recommendations, relying on servers to store client data and dispatch advice to ***, these conventional approaches raise significant concerns regarding data privacy and often result in computational inefficiencies. E-health recommendation services, distinct from other recommendation domains, demand not only precise and swift analyses but also a stringent adherence to privacy safeguards, given the users' reluctance to disclose their identities or health information. In response to these challenges, we explore a new paradigm called on-device recommendation tailored to E-health diagnostics, where diagnostic support(such as biomedical image diagnostics), is computed at the client *** leverage the advances of federated learning to deploy deep learning models capable of delivering expert-level diagnostic suggestions on clients. However, existing federated learning frameworks often deploy a singular model across all edge devices, overlooking their heterogeneous computational capabilities. In this work, we propose an adaptive federated learning framework utilizing BlockNets, a modular design rooted in the layers of deep neural networks, for diagnostic recommendation across heterogeneous devices. Our framework offers the flexibility for users to adjust local model configurations according to their device's computational power. To further handle the capacity skewness of edge devices, we develop a data-free knowledge distillation mechanism to ensure synchronized parameters of local models with the global model, enhancing the overall accuracy. Through comprehensive experiments across five real-world datasets, against six baseline models, within six experimental setups, and various data distribution scenario
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
暂无评论