咨询与建议

限定检索结果

文献类型

  • 38 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 22 篇 计算机科学与技术...
    • 20 篇 软件工程
    • 9 篇 生物工程
    • 6 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 28 篇 理学
    • 19 篇 数学
    • 10 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 5 篇 物理学
    • 3 篇 化学
    • 2 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 7 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 2 篇 工商管理

主题

  • 3 篇 machine learning
  • 3 篇 convolutional ne...
  • 2 篇 deep neural netw...
  • 2 篇 neural networks
  • 2 篇 convolution
  • 2 篇 benchmarking
  • 2 篇 image classifica...
  • 2 篇 aerosols
  • 2 篇 training
  • 1 篇 extrapolation
  • 1 篇 analysis
  • 1 篇 eigenvalues and ...
  • 1 篇 parallelization
  • 1 篇 scalability
  • 1 篇 productivity
  • 1 篇 head
  • 1 篇 deep-learning
  • 1 篇 database systems
  • 1 篇 phase space meth...
  • 1 篇 magnetic resonan...

机构

  • 9 篇 competence cente...
  • 9 篇 institute for ma...
  • 7 篇 fraunhofer cente...
  • 4 篇 faculty of mathe...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 data and web sci...
  • 3 篇 iwr university o...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 faculty of physi...

作者

  • 9 篇 keuper janis
  • 4 篇 harder paula
  • 4 篇 janis keuper
  • 3 篇 pfreundt franz-j...
  • 3 篇 gauger nicolas r...
  • 3 篇 watson-parris du...
  • 3 篇 keuper margret
  • 3 篇 wolter moritz
  • 3 篇 franz-josef pfre...
  • 2 篇 volkmann eric
  • 2 篇 hamaekers jan
  • 2 篇 kodamullil alpha...
  • 2 篇 domingo-fernánde...
  • 2 篇 heese raoul
  • 2 篇 nicolas r. gauge...
  • 2 篇 griebel michael
  • 2 篇 stier philip
  • 2 篇 strassel dominik
  • 2 篇 bohn bastian
  • 2 篇 chatzimichailidi...

语言

  • 42 篇 英文
  • 5 篇 其他
检索条件"机构=Fraunhofer Center Machine Learning Scientific Computing"
47 条 记 录,以下是1-10 订阅
排序:
Generative models for the transfer of knowledge in seismic interpretation with deep learning
收藏 引用
Leading Edge 2021年 第7期40卷 534-542页
作者: Durall, Ricard Tschannen, Valentin Ettrich, Norman Keuper, Janis Fraunhofer Institute for Industrial Mathematics Kaiserslautern Germany Interdisciplinary Center for Scientific Computing University of Heidelberg Heidelberg Germany Fraunhofer Research Center for Machine Learning Germany Institute for Machine Learning and Analytics Offenburg University Offenburg Germany
Interpreting seismic data requires the characterization of a number of key elements such as the position of faults and main reflections, presence of structural bodies, and clustering of areas exhibiting a similar ampl... 详细信息
来源: 评论
PHYSICS-INFORMED learning OF AEROSOL MICROPHYSICS
arXiv
收藏 引用
arXiv 2022年
作者: Harder, Paula Watson-Parris, Duncan Stier, Philip Strassel, Dominik Gauger, Nicolas R. Keuper, Janis Atmospheric Oceanic and Planetary Physics Department of Physics Universty of Oxford United Kingdom Fraunhofer Center High-Performance Computing Fraunhofer ITWM Germany Fraunhofer Center Machine Learning Fraunhofer Society Germany Scientific Computing TU Kaiserslautern Germany Institute for Machine Learning and Analytics
Aerosol particles play an important role in the climate system by absorbing and scattering radiation and influencing cloud properties. They are also one of the biggest sources of uncertainty for climate modeling. Many... 详细信息
来源: 评论
Tensor parametric Hamiltonian operator inference
arXiv
收藏 引用
arXiv 2025年
作者: Vijaywargiya, Arjun McQuarrie, Shane A. Gruber, Anthony Department of Applied and Computational Mathematics and Statistics University of Notre Dame United States Computational Mathematics Center for Computing Research Sandia National Laboratories Scientific Machine Learning Center for Computing Research Sandia National Laboratories
This work presents a tensor-based approach to constructing data-driven reduced-order models corresponding to semi-discrete partial differential equations with canonical Hamiltonian structure. By expressing parameter-v... 详细信息
来源: 评论
ProtSTonKGs: A Sophisticated Transformer Trained on Protein Sequences, Text, and Knowledge Graphs  13
ProtSTonKGs: A Sophisticated Transformer Trained on Protein ...
收藏 引用
13th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences, SWAT4HCLS 2022
作者: Balabin, Helena Hoyt, Charles Tapley Gyori, Benjamin M. Bachman, John Kodamullil, Alpha Tom Hofmann-Apitius, Martin Domingo-Fernández, Daniel Department of Bioinformatics Fraunhofer Institute for Algorithms and Scientific Computing Sankt Augustin53757 Germany Bonn-Rhein-Sieg University of Applied Sciences Sankt Augustin53757 Germany Laboratory of Systems Pharmacology Harvard Medical School BostonMA02115 United States Fraunhofer Center for Machine Learning Germany Enveda Biosciences BoulderCO80301 United States
While most approaches individually exploit unstructured data from the biomedical literature or structured data from biomedical knowl- edge graphs, their union can better exploit the advantages of such ap- proaches, ul... 详细信息
来源: 评论
Canonical convolutional neural networks
arXiv
收藏 引用
arXiv 2022年
作者: Veeramacheneni, Lokesh Wolter, Moritz Klein, Reinhard Garcke, Jochen Department of Computer Science Hochschule Bonn-Rhein-Sieg Fraunhofer Center for Machine Learning SCAI Germany High Performance Computing and Analytics Lab University of Bonn Fraunhofer Center for Machine Learning SCAI Germany Department of Computer Science University of Bonn Germany Fraunhofer Center for Machine Learning SCAI Institute for Numerical Simulation University of Bonn Germany
We introduce canonical weight normalization for convolutional neural networks. Inspired by the canonical tensor decomposition, we express the weight tensors in so-called canonical networks as scaled sums of outer vect... 详细信息
来源: 评论
A scalable generative model for dynamical system reconstruction from neuroimaging data  38
A scalable generative model for dynamical system reconstruct...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Volkmann, Eric Brändle, Alena Durstewitz, Daniel Koppe, Georgia Medical Faculty Mannheim Heidelberg University Mannheim Germany Institute for Machine Learning Johannes Kepler University Linz Austria Interdisciplinary Center for Scientific Computing Heidelberg University Heidelberg Germany Faculty of Physics and Astronomy Heidelberg University Heidelberg Germany Hector Institute for AI in Psychiatry Dept. for Psychiatry and Psychotherapy CIMH Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany
Data-driven inference of the generative dynamics underlying a set of observed time series is of growing interest in machine learning and the natural sciences. In neuroscience, such methods promise to alleviate the nee...
来源: 评论
On the influence of several factors on pathway enrichment analysis
arXiv
收藏 引用
arXiv 2022年
作者: Mubeen, Sarah Kodamullil, Alpha Tom Hofmann-Apitius, Martin Domingo-Fernández, Daniel Department of Bioinformatics Fraunhofer Institute for Algorithms and Scientific Computing Sankt Augustin53757 Germany University of Bonn Bonn53115 Germany Fraunhofer Center for Machine Learning Germany Enveda Biosciences BoulderCO80301 United States
Pathway enrichment analysis has become a widely used knowledge-based approach for the interpretation of biomedical data. Its popularity has led to an explosion of both enrichment methods and pathway databases. While t... 详细信息
来源: 评论
On the effects of biased quantum random numbers on the initialization of artificial neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Heese, Raoul Wolter, Moritz Mücke, Sascha Franken, Lukas Piatkowski, Nico Fraunhofer Center for Machine Learning and Fraunhofer Institute for Industrial Mathematics ITWM Germany Fraunhofer Center for Machine Learning and Fraunhofer Institute for Algorithms and Scientific Computing SCAI Germany Artificial Intelligence Group TU Dortmund University Germany Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Germany
Recent advances in practical quantum computing have led to a variety of cloud-based quantum computing platforms that allow researchers to evaluate their algorithms on noisy intermediate-scale quantum (NISQ) devices. A... 详细信息
来源: 评论
Predicting Properties of Oxide Glasses Using Informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Maier, Gregor Hamaekers, Jan Martilotti, Dominik-Sergio Ziebarth, Benedikt Fraunhofer Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven Sankt Augustin53757 Germany Institut für Numerische Simulation Universität Bonn Friedrich-Hirzebruch-Allee 7 Bonn53115 Germany Fraunhofer Center for Machine Learning Schloss Birlinghoven Sankt Augustin53757 Germany Schott AG Hattenbergstrasse 10 Mainz55122 Germany
Many modern-day applications require the development of new materials with specific properties. In particular, the design of new glass compositions is of great industrial interest. Current machine learning methods for... 详细信息
来源: 评论
Decision Support by Interpretable machine learning in Acoustic Emission Based Cutting Tool Wear Prediction
Decision Support by Interpretable Machine Learning in Acoust...
收藏 引用
IEEE International Conference on Industrial Engineering and Engineering Management
作者: A. Schmetz C. Vahl Z. Zhen D. Reibert S. Mayer D. Zontar J. Garcke C. Brecher Fraunhofer-Institute for Production Technology IPT Aachen Germany Fraunhofer-Center for Machine Learning and Fraunhofer-Institute for Algorithms and Scientific Computing SCAI Sankt Augustin Germany Laboratory for Machine Tools and Production Engineering (WZL) RWTH Aachen University Germany
Predictive maintenance is a prominent and active field for applications of machine learning in industry in recent years. The health and wear of equipment directly influences the productivity and quality of the product... 详细信息
来源: 评论